
Journal of Approximation Theory 117, 189–206 (2002)

doi:10.1006/jath.2002.3696
Oblique Projectionsand Abstract Splines

G. Corach1,2

Instituto Argentino de Matem !aatica, Saavedra 15 Piso 3 (1083), Buenos Aires, Argentina and

Departamento de Matematica, Facultad de Ingenieria, Paseo Colon 850, Buenos Aires, Argentina

E-mail : gcorach@dm:uba:ar

A. Maestripieri

Instituto de Ciencias, UNGS, Roca 850 (1663) San Miguel, Argentina

E-mail : amaestri@ungs:edu:ar

and

D. Stojanoff3

Departamento de Matem !aatica, FCE-UNLP, 115 y 50 (1900) La Plata, Argentina

E-mail : demetrio@mate:unlp:edu:ar

Communicated by Frank Deutsch

Received October 31, 2000; accepted in revised form April 1, 2002

Given a closed subspace S of a Hilbert space H and a bounded linear operator

A 2 LðHÞ which is positive, consider the set of all A-self-adjoint projections onto S:

PðA;SÞ ¼ fQ 2 LðHÞ :Q2 ¼ Q; QðHÞ ¼ S; AQ ¼ QnAg:

In addition, if H1 is another Hilbert space, T :H ! H1 is a bounded linear operator

such that T nT ¼ A and x 2 H; consider the set of ðT ;SÞ spline interpolants to x:

spðT ;S; xÞ ¼ Z 2 xþS : jjTZjj ¼ min
s2S

jjT ðxþ sÞjj
� �

:

A strong relationship exists between PðA;SÞ and spðT ;S; xÞ: In fact, PðA;SÞ is not

empty if and only if spðT ;S; xÞ is not empty for every x 2 H: In this case, for any

x 2 H=S it holds

spðT ;S; xÞ ¼ fð1 
 QÞx :Q 2 PðA;SÞg
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and for any x 2 H; the unique vector of spðT ;S; xÞ with minimal norm is

ð1 
 PA;SÞx; where PA;S is a distinguished element of PðA;SÞ: These results offer a

generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard

and others, which hold for closed range operators. # 2002 Elsevier Science (USA)

1. INTRODUCTION

Given two Hilbert spaces H and H1; T 2 LðH;H1Þ; S � H a closed
subspace and x 2 H; an abstract spline or a ðT ;SÞ-spline interpolant to x is
any element of the set

spðT ;S; xÞ ¼ Z 2 xþS:jjTZjj ¼ min
s2S

jjT ðxþ sÞjj
� �

:

Observe that A ¼ T nT ¼ jT j2; as a positive bounded operator on H; defines
a semiinner product h; iA :H�H ! C by hx; ZiA ¼ hAx; Zi; x; Z 2 H
and a corresponding seminorm jj  jjA :H ! Rþ given by jjZjjA ¼ hZ; Zi1=2

A ¼
hAZ; Zi1=2 ¼ jjTZjj: Thus, if for any Z 2 H we consider dAðZ;SÞ ¼ infs2S jjZ
þsjjA; then

spðT ;S; xÞ ¼ fZ 2 xþS; jjZjjA ¼ dAðx;SÞg:

If A is an invertible operator, then h;iA is a scalar product, ðH; h;iAÞ is a
Hilbert space and, by the projection theorem, dAðx;SÞ ¼ jjðI 
 PA;SÞxjjA and
spðT ;S; xÞ ¼ fðI 
 PA;SÞxg; where PA;S is unique orthogonal projection
onto S which is orthogonal to the inner product h;iA: However, if A is not
invertible then jj  jjA is or a seminorm or an incomplete norm and we cannot
use the projection theorem unless we complete the quotient H=ker A: One of
the main goals of this paper is to get a simpler way of describing the set
spðT ;S; xÞ:

We start with a positive bounded linear operator A on a Hilbert space H
and a closed subspace S of H: The subspace S?A ¼ fx:hAx; Zi ¼ 0 8
Z 2 Sg is called the A-orthogonal companion of S: Note the identities

S?A ¼ A
1ðS?Þ ¼ AðSÞ? ¼ kerðPAÞ: ð1Þ

Instead of defining adjoint operators with respect to h; iA; we restrict our
discussion to A-self-adjoint operators, i.e. W 2 LðHÞ such that AW ¼ W nA:
Note that any such W satisfies hW x; ZiA ¼ hx;W ZiA; x; Z 2 H:

The pair ðA;SÞ is said to be compatible if there exists a projection Q 2
LðHÞ such that QðHÞ ¼ S and AQ ¼ QnA: The main result in this paper is
the description of the relationship between the set

PðA;SÞ ¼ fQ 2 Q : RðQÞ ¼ S; AQ ¼ QnAg
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and spðT ;S; xÞ; where T :H ! H1 is any bounded linear operator such
that T nT ¼ A: A relevant point here is that this method allows to tackle the
case of operators with non-closed range. Thus, several results by Atteia [3],
Sard [18], Golomb [11], Shekhtman [19], de Boor [4], Izumino [13], Delvos
[9], Deutsch [8] are generalized to any bounded linear operators T :

If ðA;SÞ; is compatible, there exists a distinguished element PA;S 2 PðA;SÞ:
The study of the map ðA;SÞ ! PA;S was initiated by Pasternak-Winiarski [15]
at least for invertible A: A geometrical description of that map can be found in
[2]. In [7, 12] the inversibility hypothesis on A was removed, opening, in that
way, the possibility that PðA;SÞ be empty or have many elements. This
induces the notion of compatibility of a pair ðA;SÞ: This paper is mainly
devoted to explore the relationship of the compatibility of ðA;SÞ with the
existence of spline interpolants for every x 2 H: Section 2 contains a short
study on compatibility of a pair ðA;SÞ: If ðA;SÞ is compatible, the properties
of the distinguished element PA;S 2 PðA;SÞ are described. In Section 3, we
show that ðA;SÞ is compatible if and only if spðT ;S; xÞ is not empty for any
x 2 H and that spðT ;S; xÞ ¼ fð1 
 QÞx :Q 2 PðA;SÞg for any x 2 H=S:
Moreover, the vector of spðT ;S; xÞ with minimal norm is exactly ð1 
 PA;SÞx:
In Section 4, we present some characterizations of PA;S which are useful for the
study of the convergence of fPA;Snxg if ðA;SnÞ is compatible for every n 2 N

and Sn decreases to 0: This study is the goal of Section 5. Finally, Section 6
includes several examples of compatibility and spline projections.

In this paper, LðHÞ is the algebra of all linear bounded operators on the
Hilbert space H and LðHÞþ is the subset of LðHÞ of all self-adjoint positive
(i.e., non-negative definite) operators. For every C 2 LðHÞ its range is
denoted by RðCÞ: If RðCÞ is closed, then Cw denotes the Moore–Penrose
pseudoinverse of C: The orthogonal projections onto a closed subspace S is
denoted by PS: The direct sum of subspaces S and T is denoted S ’þþT:
Finally, S�T denotes S\T?:

2. A-SELF-ADJOINT PROJECTIONS

Throughout this paper S denotes a closed subspace of H and A is a fixed
operator in LðHÞþ: Recall that S?A ¼ A
1ðS?Þ: It is easy to see that a
projection Q belongs to PðA;SÞ if and only if RðQÞ ¼ S and ker Q � A
1ðS?Þ:
Then

the pair ðA;SÞ is compatible if and only if Sþ A
1ðS?Þ ¼ H: ð2Þ

In this case, PðA;SÞ has a single element if and only if ker A\S ¼ f0g
because

S\ A
1ðS?Þ ¼ ker A\S: ð3Þ
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If ðA;SÞ is compatible , then there is a distinguished element in PðA;SÞ; namely
the unique projection PA;S onto S with kernel A
1ðS?Þ � ðker A\SÞ: The
elements of PðA;SÞ can be parametrized by the set of relative supplements of
ker A\S into A
1ðS?Þ:

The set PðA;SÞ can also be characterized using the matrix operator
decomposition induced by the orthogonal projection P ¼ PS: Under this
representation, A has a matrix form

A ¼
a b

bn c

 !
; ð4Þ

where a 2 LðSÞþ; b 2 LðS?;SÞ and c 2 LðS?Þþ: Observe that P ¼ 1
0

0
0

� �
;

PA ¼ a
0

b
0

� �
and PAP ¼ a

0
0
0

� �
: Every projection Q with range S has the

matrix form Q ¼ 1
0

x
0

� �
for some x 2 LðS?;SÞ: It is easy to see that Q 2

PðA;SÞ if and only if x satisfies the equation ax ¼ b: Then

PðA;SÞ ¼ Q ¼
1 x

0 0

 !
: x 2 LðS?;SÞ and ax ¼ b

( )
: ð5Þ

Note that Eq. (5) implies that if ðA;SÞ is compatible, then RðbÞ � RðaÞ: As a
corollary of a well-known theorem of R.G. Douglas, it can be shown that
these two conditions are, indeed, equivalent. First, we recall Douglas’
theorem [10]:

Theorem 2.1. Let B;C 2 LðHÞ: Then the following conditions are

equivalent:

1. RðBÞ � RðCÞ:
2. There exists a positive number l such that BBn4lCCn:
3. There exists D 2 LðHÞ such that B ¼ CD:Moreover, there exists a

unique operator D which satisfies the conditions

B ¼ CD; ker D ¼ ker B and RðDÞ � RðCnÞ:

In this case, jjDjj2 ¼ inffl : BBn4lCCng; D is called the reduced solution of

the equation CX ¼ B: If RðCÞ is closed, then D ¼ CwB:

Corollary 2.2. Let A 2 LðHÞþ and S � H a closed subspace.
If A has matrix form as in (4), then ðA;SÞ is compatible if and only if RðbÞ �
RðaÞ:
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The next theorem describes some properties of PðA;SÞ and PA;S: The
norm of PA;S will be computed in Section 5.

Theorem 2.3. Let A 2 LðHÞþ with matrix form (4), such that the pair

ðA;SÞ is compatible.

1. The distinguished projection PA;S 2 PðA;SÞ has the matrix form

PA;S ¼
1 d

0 0

 !
;

where d 2 LðS?;SÞ is the reduced solution of the equation ax ¼ b:
2. PðA;SÞ is an affine manifold which can be parametrized as

PðA;SÞ ¼ PA;S þ LðS?;NÞ;

where N ¼ A
1ðS?Þ \S ¼ ker A\S and LðS?;NÞ is viewed as a subspace

of LðHÞ: A matrix representation of this parametrization is

PðA;SÞQ ¼ PA;S þ z ¼

1 0 d

0 1 z

0 0 0

0
B@

1
CA

S�N

N

S?

: ð6Þ

3. PA;S has minimal norm in PðA;SÞ; i.e. jjPA;Sjj ¼ minfjjQjj: Q 2
PðA;SÞg:

Proof.

(1) If Q ¼ 1
0

d
0

� �
; then Q 2 PðA;SÞ and ker Q � A
1ðS?Þ: Since PA;S is

characterized by the properties RðPA;SÞ ¼ S and ker PA;S ¼ A
1ðS?Þ �N
then, in order to show that Q ¼ PA;S it suffices to prove that ker Q � N?:
Let x 2 ker Q and write x ¼ x1 þ x2 with x1 2 S and x2 2 S?: Then 0 ¼
Qx ¼ x1 þ dx2: If Z 2 N; then hx; Zi ¼ hx1; Zi ¼ 
hdx2; Zi ¼ 0 because, by
Theorem 2.1, RðdÞ � RðaÞ and, as an operator in LðSÞ; ker a ¼ S\ ker PAP
¼ S\ ker A ¼ N:

(2) Let Q ¼ 1
0

y
0

� �
with y 2 LðS?;SÞ and let d 2 LðS?;SÞ be the

reduced solution of the equation ax ¼ b: Then Q 2 PðA;SÞ if and only if
ay ¼ b: Therefore, if z ¼ y 
 d; then Q 2 PðA;SÞ if and only if Q ¼ PA;S þ z
and RðzÞ � ker a ¼ N: Concerning the matrix representation (6), recall that
RðdÞ � RðaÞ ¼ ðker aÞ? ¼ S�N: Therefore,

Q ¼ PA;S þ z ¼

1 0 d

0 1 0

0 0 0

0
B@

1
CAþ

0 0 0

0 0 z

0 0 0

0
B@

1
CA

S�N

N

S?

:
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(3) If Q 2 PðA;SÞ has the matrix form given in Eq. (6), then

jjQjj2 ¼ jjQQnjj ¼ 1 þ

0 0 d

0 0 z

0 0 0

0
B@

1
CA

�������
�������

�������
�������
2

51 þ jjd jj2 ¼ jjPA;Sjj
2: ]

Remark 2.4. Under additional hypothesis on A; other characterizations
of compatibility can be used. We mention a sample of these, taken from
[6, 7]:

1. If A is injective then the following conditions are equivalent: (a)The
pair ðA;SÞ is compatible. (b)S? � RðAþ lð1 
 P ÞÞ for some (and then for
any) l > 0: (c)P ðAðSÞÞ ¼ S and AðSÞ \S? ¼ f0g:

2. If A has closed range then the following conditions are equivalent:
(a)The pair ðA;SÞ is compatible. (b)RðPAP Þ is closed. (c)Sþ ker A is closed.

3. If RðPAP Þ is closed (or, equivalently, if RðPA1=2Þ or A1=2ðSÞ are
closed), then ðA;SÞ is compatible. Indeed, using the matrix form (4), the
positivity of A implies that RðbÞ � Rða1=2Þ (see, e.g., [1]). If RðPAP Þ ¼ RðaÞ is
closed, then RðbÞ � Rða1=2Þ ¼ RðaÞ so that ðA;SÞ is compatible by
Corollary 2.2.

3. SPLINES AND A-SELF-ADJOINT PROJECTIONS

In this section, we characterize the existence of splines in terms
of the existence of A-self-adjoint projections. The first result extends a
theorem of Izumino [13] to operators whose ranges are not necessarily
closed.

Proposition 3.1. Let T 2 LðH;H1Þ; A ¼ T nT 2 LðHÞ and S � H a

closed subspace. Then, for any x 2 H;

spðT ;S; xÞ ¼ ðxþSÞ \S?A :

In particular, sp ðT ;S; xÞ is an affine manifold of LðHÞ and, if Z 2 sp;
ðTS; xÞ; then sp ðT ;S; xÞ ¼ Zþ ker T \S:

Proof. Suppose that Z 2 ðxþ SÞ \ A
1ðS?Þ and s 2 S: Then hAZ;si
¼ hAs; Zi ¼ 0 and

jjT ðZþ sÞjj2 ¼ hAðZþ sÞ; Zþ si ¼ hAZ; Zi þ hAs; si5hAZ; Zi ¼ jjTZjj2:
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Therefore, Z 2 sp ðT ;S; xÞ: Conversely, if Z 2 sp ðT ;S; xÞ and s 2 S; then,
for any t 2 R;

jjTZjj24jjT ðZþ tsÞjj2 ¼hAðZþ tsÞ; Zþ tsi

¼hAZ; Zi þ t2hAs; si þ 2tRehAZ;si

¼ jjTZjj2 þ t2hAs;si þ 2tRehAZ;si;

therefore t2hAs;si þ 2tRehAZ;si50 for all t 2 R and a standard argument
shows that hAZ;si ¼ 0 and then Z 2 ðxþ SÞ \ A
1ðS?Þ: ]

Theorem 3.2. Let T 2 LðH;H1Þ; A ¼ T nT 2 LðHÞ and S � H a closed

subspace.

1. If x 2 H; sp ðT ;S; xÞ is not empty x 2 Sþ A
1ðS?Þ:
2. The following conditions are equivalent: (a)sp ðT ;S; xÞ is not empty

for every x 2 H: (b)Sþ A
1ðS?Þ ¼ H: (c)The pair ðA;SÞ is compatible.
3. If ðA;SÞ is compatible and x 2 H=S; it holds sp ðT ;S; xÞ ¼

fðI 
 QÞx :Q 2 PðA;SÞg:
4. If ðA;SÞ is compatible, then for every x 2 H; ðI 
 PA;SÞx is the unique

vector in sp ðT ;S; xÞ with minimal norm.

Proof. The first assertion follows directly from Proposition 3.1. Indeed,
if Z 2 sp ðT ;S; xÞ and Z ¼ xþ s with s 2 S; then x ¼ 
sþ Z 2 Sþ
A
1ðS?Þ; the converse implication is similar. The second assertion follows
from the first one and Eq. (2). In order to prove the third item, let x 2 H and
Q 2 PðA;SÞ: Then, by Proposition 3.1 and Eq. (2),

ðI 
 QÞx ¼ x
 Qx 2 ðxþSÞ \ ker Q � ðxþSÞ \ A
1ðS?Þ ¼ sp ðT ;S; xÞ:

Conversely, let Z 2 sp ðT ;S; xÞ and s 2 S such that x ¼ sþ Z: We are
looking for some Q 2 PðA;SÞ such that Qx ¼ s: Let Z1 ¼ ðI 
 PA;SÞx and
s1 ¼ x
 Z1 ¼ PA;Sx 2 S: Then, by Proposition 3.1,

s
 s1 ¼ Z1 
 Z 2 S\ A
1ðS?Þ ¼ ker A\S:

If x ¼ s2 þ r with s2 2 S and 0=r 2 S?; choose z 2 LðS?; ker A\SÞ
(� LðHÞ) such that zðrÞ ¼ s
 s1: By Theorem 2.3, Q ¼ PA;S þ z 2 PðA;SÞ
and clearly Qx ¼ s:

The minimality of jjð1 
 PA;SÞxjj is proved as follows. If x 2 S; then
ðI 
 PA;SÞx ¼ 0; which must be minimal. If x =2 S; let x ¼ s2 þ r with s2 2 S
and 0=r 2 S?: By Theorem 2.3, any Q 2 PðA;SÞ has the form Q ¼ PA;S þ z;
with z 2 LðS?; ker A\SÞ (� LðHÞ). Recall that RðPA;SÞ ¼ S� ðker A\
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SÞ: Therefore,

jjðI 
 QÞxjj2 ¼ jjðI 
 QÞrjj2 ¼ jjr
 PA;SðrÞ 
 zðrÞjj2 ¼ jjrjj2 þ jjPA;SðrÞjj2 þ jjzðrÞjj2

5jjrjj2 þ jjPA;SðrÞjj2 ¼ jjr
 PA;SðrÞjj2 ¼ jjðI 
 PA;SÞxjj2: ]

Corollary 3.3. Let T 2 LðH;H1Þ; A ¼ T nT 2 LðHÞ and S � H a

closed subspace. Then the following are equivalent:

1. sp ðT ;S; xÞ has a unique element for every x 2 H:
2. The pair ðA;SÞ is compatible and ker T \S ¼ f0g:

Remark 3.4. Let T 2 LðH;H1Þ; A ¼ T nT 2 LðHÞ and S � H a closed
subspace.

1. If ðA;SÞ is compatible then, by item 4 of Theorem 3.2, the projection
1 
 PA;S coincides with the so-called spline projection for T and S
when T has a closed range.

2. If RðT Þ is closed, then, by Remark 2.4 and Theorem 3.2, sp ðT ;S;
xÞ=| for every x 2 H if and only if ker T þS is closed. In case that
ker T \S ¼ f0g; then it is equivalent to the condition that the
inclination between ker T and S is less than one (see [4, 8]).

3. If x 2 S; then sp ðT ;S; xÞ ¼ ker T \S: On the other hand,
ðI 
 QÞx ¼ 0 for every Q 2 PðA;SÞ: So the equality of item 3 of
Theorem 3.2 may be false in this case.

4. CHARACTERIZATIONS OF THE SPLINE PROJECTION PA;S

Fix A 2 LðHÞþ and a closed subspace S � H: As before, we denote P ¼
PS: In this section, two different descriptions of the spline projection PA;S
are given and, as a consequence, we relate PA;S with the shorted operator
(see [1] and Remark 4.4 below).

By Corollary 2.2, it holds that the pair ðA;SÞ is compatible if and only if
RðPAÞ � RðPAP Þ: In case that A is invertible, it is known (see [2]) that, in the
matrix form (4), a is invertible in LðSÞ and

PA;S ¼
a
1 0

0 0

 !
PA ¼

1 a
1b

0 0

 !
ð7Þ

because a
1b is the reduced solution of ax ¼ b (see Theorem 2.3). Rewriting
(7), we get ðPAP ÞPA;S ¼ PA: Thus, if A is invertible, PA;S is the reduced
solution of the equation ðPAP ÞX ¼ PA: Let us consider the general case, in
other words, if the pair ðA;SÞ is compatible, let us relate PA;S with the
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reduced solution Q of the equation

ðPAP ÞX ¼ PA: ð8Þ

Observe that, in general, RðPAP Þ is strictly contained in S: Therefore, RðQÞ
may be smaller that S ¼ RðPA;SÞ:

Proposition 4.1. If the pair ðA;SÞ is compatible, Q is the reduced

solution of Eq. (8) and N ¼ ker A\S; then

PA;S ¼ PN þ Q:

Moreover, Q verifies the following properties:

1. Q2 ¼ Q; ker Q ¼ A
1ðS?Þ and RðQÞ ¼ S�N:
2. Q is A-self-adjoint.
3. Q ¼ PA;S�N:

Proof. Using the matrix form (4) of A; observe that, in LðSÞ; ker a ¼ N

and RðaÞ ¼Rða1=2Þ ¼S�N: Note that RðQÞ � RðaÞ: Also ker Q ¼ ker ðPAÞ
¼ A
1ðS?Þ: If x 2 S�N; then

aðQxÞ ¼ ðPAP ÞQx ¼ PAx ¼ PAPx ¼ aðxÞ:

Since a is injective in S�N; we can deduce that Qx ¼ x for all x 2
S�N: Now, the compatibility of ðA;SÞ implies that Sþ A
1ðS?Þ ¼ H:

Also A
1ðS?Þ \S ¼ ker A\S ¼ N: Therefore A
1ðS?Þ ’þþðS�NÞ ¼
H: Then Q2 ¼ Q and RðQÞ ¼ S�N: Note that

ker Q ¼ A
1ðS?Þ � A
1ððS�NÞ?Þ ¼ RðQÞ?A ;

so that Q is A-self-adjoint by Eq. (2). On the other hand, ðS�NÞ \
ker A ¼ f0g; so that Q is the unique element of P ðA;S�NÞ; by Theorem

2.3. Observe that RðQÞ � N? and N � ker A � A
1ðS?Þ ¼ ker Q: There-

fore, ðPN þ QÞ2 ¼ PN þ Q; RðPN þ QÞ ¼ S and ker ðPN þ QÞ ¼ ðA
1ðS?ÞÞ
�N: These formulae clearly imply that PN þ Q ¼ PA;S (see Theorem

2.3). ]

Proposition 4.2. If ðA;SÞ is compatible and M ¼ A1=2ðSÞ; then

RðPMA1=2Þ � RðA1=2P Þ: Moreover, Eq. (8) and

ðA1=2P ÞX ¼ PMA1=2 ð9Þ
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have the same reduced solution. In particular, if A1=2ðSÞ is closed and ker A\
S ¼ f0g; then

PA;S ¼ ðA1=2P ÞwPMA1=2 ¼ ðA1=2P ÞwA1=2 ¼ ðTP ÞwT ð10Þ

for every T 2 LðH;H1Þ such that T nT ¼ A:

Proof. Denote B ¼ A1=2: Recall that M ¼ BðSÞ ¼ B
1ðS?Þ?: Observe
that

BPMB ¼ APA;S ¼ APPA;S : ð11Þ

in fact, for x 2 H; let Z ¼ PA;Sx and r ¼ x
 Z 2 A
1ðS?Þ; then BZ 2 M and
Br 2 B
1ðS?Þ ¼ M?: Hence, BPMBx ¼ AZ ¼ APA;Sx: By Proposition 4.1,
the projection Q ¼ PA;S 
 PN is the reduced solution of the equation PAP
X ¼ PA: We shall see that Q is the reduced solution of Eq. (9). First note
that, by Eq. (11), BPMB ¼ ðAP ÞPA;S ¼ ðAP ÞQ; so BðPMB
 BPQÞ ¼ 0: But
RðPMB
 BPQÞ � RðBÞ ¼ ðker BÞ?: Hence, Q is a solution of (9). Note that
ker PMB ¼ B
1ðB
1ðS?ÞÞ ¼ A
1ðS?Þ ¼ ker Q by Proposition 4.1. Finally,

RððBP ÞnÞ ¼ RðPBÞ ¼ RðPAP Þ ¼ S�N ¼ RðQÞ:

The first equality of Eq. (10) follows directly. The second, from the fact that
ðA1=2P ÞwPM ¼ ðA1=2P Þw: The last equality follows easily using the polar
decomposition of T because A1=2 ¼ jT j: ]

Formula (10), for operators with closed range, is due to Golomb [11].

Corollary 4.3. Under the notations of Proposition 4.2, the pair ðA;SÞ is

compatible if and only if RðPMA1=2Þ � RðA1=2P Þ:

Proof. Suppose that RðPMA1=2Þ � RðA1=2P Þ: Then, given x 2 H; there
must exist s 2 S such that PMA1=2x ¼ A1=2s: Therefore, A1=2ðx
 sÞ ¼
ð1 
 PMÞA1=2x and

jjA1=2ðx
 sÞjj ¼ jjð1 
 PMÞA1=2xjj ¼ dðA1=2x;A1=2ðSÞÞ

¼ inffjjA1=2ðxþ tÞjj: t 2 Sg: ð12Þ

Hence, x
 s 2 sp ðT ;S; xÞ and sp ðT ;S; xÞ=| for every x 2 H: This
implies compatibility by Theorem 3.2. The converse implication was shown
in Proposition 4.2. ]



OBLIQUE PROJECTIONS AND SPLINES 199
Remark 4.4. If A 2 LðHÞþ and S 2 H is a closed subspace, then the set

fX 2 LðHÞþ :X4A and RðX Þ � S?g

has a maximum (for the natural order relation in LðHÞþ), which is called the
shorted operator of A to S?: We denote it by SðP ;AÞ: This notion, due to
Krein [14] and Anderson–Trapp [1], has many applications to electrical
engineering. It is well known (see [16]) that

SðP ;AÞ ¼ A1=2PTA1=2;

where T ¼ A
1=2ðS?Þ ¼ A1=2ðSÞ?: From the proof of Proposition 4.2, it
follows that, if ðA;SÞ is compatible, then A1=2ð1 
 PTÞA1=2 ¼ APA;S:
Therefore, in this case, SðP ;AÞ ¼ Að1 
 PA;SÞ: More generally, it can be
shown that SðP ;AÞ ¼ Að1 
 QÞ for every Q 2 PðA;SÞ (see [7]).

5. CONVERGENCE OF SPLINE PROJECTIONS

This section is devoted to the study of the convergence of abstract splines
in the general (i.e. not necessarily closed range) case. Given A 2 LðHÞþ; let
us consider a sequence of closed subspaces Sn such that all pairs ðA;SnÞ are
compatible. Following de Boor [4] and Izumino [13], it is natural to look for
conditions which are equivalent to the fact that PA;Sn !

SOT 0 (i.e. the spline
projections converge to I), where !SOT means convergence in the strong
operator topology. This problem has a well-known solution under the
assumption that RðAÞ is closed (see [4] or [13]). However, in our more general
setting, it is possible that the sequence fSng decreases to f0g; while jjPA;Sn jj
tends to infinity (see Example 5.7). This induces us to consider the following
weaker convergence:

Definition 5.1. Let A 2 LðHÞþ and Tn; T 2 LðHÞ; n 2 N: We shall say
that the sequence Tn converges A-SOT to T : Tn !A
SOT T if

jjðTn 
 T ÞxjjA ! 0 for every x 2 H:

Note that Tn !A
SOT T if and only if A1=2Tn !SOT A1=2T :

We start with the computation of the norm of PA;S for any compatible
pair ðA;SÞ: Before that, recall the following formula, due to Ptak [17] (see
also [5, 7]): if Q1 and Q2 are orthogonal projections such that RðQ1Þþ
RðQ2Þ ¼ H; then the norm of the unique projection Q3 with ker Q3 ¼ RðQ1Þ
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and RðQ3Þ ¼ RðQ2Þ is

jjQ3jj ¼ ð1 
 jjQ1Q2jj
2Þ
1=2: ð13Þ

Proposition 5.2. Let A 2 LðHÞþ such that the pair ðA;SÞ is compatible.

Then,

jjPA;Sjj2 ¼ inffl > 0: PA2P4lðPAP Þ2g: ð14Þ

If, in addition, ker A\S ¼ f0g; then

jjPA;Sjj ¼ ð1 
 jjQP jj2Þ
1=2; ð15Þ

where Q denotes the orthogonal projection onto A
1ðS?Þ:

Proof. Let Q be the reduced solution of the equation ðPAP ÞX ¼ PA: Then
jjQjj2 equals the infimum of Eq. (14) by Douglas Theorem. On the other
hand, by Proposition 4.1, jjQjj ¼ jjPA;Sjj; showing formula (14). If ker A\
S ¼ f0g; then Theorem 2.3 assures that RðPA;SÞ ¼ S and ker PA;S ¼
A
1ðS?Þ: Therefore, (15) follows from Ptak formula (13). ]

Remark 5.3. Let A 2 LðHÞþ such that the pair ðA;SÞ is compatible and
ker A\S ¼ f0g: Then, if Pker A is the orthogonal projection onto ker A; then

jjPA;Sjj5ð1 
 jjPker AP jj2Þ

1=2:

Indeed, if Q is the projection of Eq. (15), then Pker A4Q because ker A �
A
1ðS?Þ: Then jjPker AP jj

2 ¼ jjPPker AP jj4jjPQP jj ¼ jjQP jj2: This inequality,
shown by de Boor [4] in the closed range case, relates the norm of PA;S with
the angle between ker A and S:

Proposition 5.4. Let A 2 LðHÞþ and let Sn (n 2 N) be closed subspaces

such that all pairs ðA;SnÞ are compatible. Denote Mn ¼ A1=2ðSnÞ; n 2 N:

1. The following conditions are equivalent: (a)PA;Sn !
A
SOT 0:

(b)hAPA;Snx; xi ! 0; for every x 2 H (i.e. APA;Sn !
WOT 0 by polarization).

(c)APA;Sn !
SOT 0: (d)SðPSn ;AÞ !

SOT A: (e)PMnA
1=2 !SOT 0:

2. If there exists C50 such that jjPA;Sn jj4C for all n 2 N and PSnA!SOT

0; then PA;Sn !
A
SOT 0:

3. If PA;Sn !
A
SOT 0; then PSnA!SOT 0:

Proof.

1. Because P n
A;Sn

A ¼ APA;Sn ; it is clear that conditions (a)–(c) are
equivalent. By Remark 4.4, SðPSn ;AÞ ¼ Að1 
 PA;Sn Þ so that (c) is equivalent
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to (d). Finally, by Proposition 4.2, we know that A1=2PA;Sn ¼ PMnA
1=2 and

this shows that (a) is equivalent to (e).
2. Suppose that there exists C50 such that jjPA;Sn jj4C for all n 2 N

and that PSnA!SOT 0: Denote Pn ¼ PSn : The fact that RðPA;Sn Þ ¼ RðPnÞ
implies that PnPA;Sn ¼ PA;Sn : Therefore, for every x 2 H;

jjP n

A;Sn
Axjj ¼ jjPn

A;Sn
PnAxjj ! 0;

since jjPA;Sn jj is bounded. Hence P n
A;Sn

A ¼ APA;Sn !
SOT 0 so that

PA;Sn !
A
SOT 0 by item 1.

3. Suppose that PA;Sn !
A
SOT 0: Then, by item 1, APA;Sn !

SOT 0: Note
that PA;SnPn ¼ Pn; so that PnP n

A;Sn
¼ Pn: Given x 2 H; we have that

jjPnAxjj ¼ jjPnP n

A;Sn
Axjj ¼ jjPnAPA;Snxjj4jjAPA;Snxjj ! 0: ]

Remark 5.5. With the notations of Proposition 5.4, it follows that PA;Sn

!A
SOT 0 if and only if A1=2ð1 
 PA;Sn Þx ! A1=2x for every x 2 H or,
equivalently, the spline interpolants xn ¼ ð1 
 PA;SnÞx satisfy that Txn ! Tx
in H1; if T 2 LðH;H1Þ and T nT ¼ A: In particular, if PA;Sn !

A
SOT 0; then
minfjjT ðxþ tÞjj : t 2 Sng ¼ jjT ð1 
 PA;Sn Þxjj ! jjTxjj:

Proposition 5.6. Let A 2 LðHÞþ and S2 � S1 � H be closed sub-

spaces. Suppose that ðA;S1Þ is compatible. Denote by Pi ¼ PSi ; i ¼ 1; 2 and

a1 ¼ P1AP1 2 LðS1Þ
þ: Then

ðA;S2Þ is compatible if and only if ða1;S2Þ is compatible in LðS1Þ:

Proof. We know that, if A ¼ a1

bn
1

b1

c1

� �
; in the matrix decomposition

induced by P1; then Rðb1Þ � Rða1Þ: Hence also RðP2b1Þ � RðP2a1Þ: If a1 ¼

a2

bn
2

b2

c2

� �
; using now the matrix decomposition induced by P2; then P2a1 ¼

a2 þ b2 and P2Að1 
 P2Þ ¼ b2 þ P2b1: Hence,

RðP2b1Þ � RðP2a1Þ ¼ Rða2Þ þ Rðb2Þ and RðP2Að1 
 P2ÞÞ ¼ Rðb2Þ þ RðP2b1Þ:

Therefore, the pair ðA;S2Þ is compatible if and only if RðP2Að1 
 P2ÞÞ �
RðP2AP2Þ ¼ Rða2Þ if and only if Rðb2Þ � Rða2Þ if and only if the pair ða1;S2Þ is
compatible. ]

Example 5.7. Let A 2 LðHÞþ injective but not invertible. With the
notations of Proposition 5.6 it is easy to see that P1PA;S2

P1 ¼ PA;S2
P1 2

Pða1;S2Þ: Note that a1 is injective, so that Pða1;S2Þ has a unique
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element and

Pa1;S2
¼ PA;S2

P1 ) jjPA;S2
jj5jjPa1;S2

jj: ð16Þ

We shall see that there exists a sequence Sn; n 2 N; of closed subspaces of
H such that

1. the pair ðA;SnÞ is compatible for every n 2 N;
2. Snþ1 � Sn for every n 2 N;
3.
T
n51 Sn ¼ f0g; so that PSn !

SOT 0;
4. jjPA;Sn jj ! 1:

In order to prove this fact, we need the following lemma:

Lemma 5.8. Let B 2 LðHÞþ be injective non-invertible. Then, for every

e > 0; there exists a closed subspace S � H such that the pair ðB;SÞ is

compatible, PSBPS is not invertible in LðSÞ and jjPB;Sjj5e
1:

Proof. Let Z 2 H be a unit vector. Denote by x ¼ BZ and consider the
subspace S ¼ fxg? and P ¼ PS: It is clear that Z 2 B
1ðS?Þ: First note that
hx; Zi ¼ hBZ; Zi > 0; so that Z =2 S: Since S is an hyperplane, this implies
that Sþ B
1ðS?Þ ¼ H and the pair ðB;SÞ is compatible. Also PBP is not
invertible because dimS? ¼ 151: Note that B
1ðS?Þ is the subspace
generated by Z: Hence, if Q ¼ PB
1ðS?Þ; it is easy to see that jjPQjj ¼ jjPZjj:
Then, by Eq. (15),

jjPB;Sjj ¼ ð1 
 jjPQjj2Þ
1=2 ¼ ð1 
 jjPZjj2Þ
1=2 ¼ jjð1 
 P ÞZjj
1

and

jjð1 
 P ÞZjj ¼ Z;
x
jjxjj

� �����
���� ¼ hZ;BZi

jjBZjj
:

So, it suffices to show that there exists a unit vector Z such that hZ;BZi4e
jjBZjj: Consider r 2 H=RðB1=2Þ a unit vector. Let rn be a sequence of unit
vectors in RðB1=2Þ such that rn ! r: Let mn 2 H such that B1=2mn ¼ rn; n 2
N; and denote by xn ¼ B1=2rn ¼ Bmn; and x ¼ B1=2r: It is easy to see, using
that BðmnÞ ¼ xn ! x =2 RðBÞ; that jjmnjj ! 1: Denote by Zn ¼ mnjjmnjj


1: Then

hZn;BZni
jjBZnjj

¼
hmn;Bmni

jjmnjj
2jjBZnjj

¼
jjB1=2mnjj

2

jjmnjj jjBmnjj
¼

1

jjmnjj jjxnjj
! 0

because xn ! x=0: ]
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By an inductive argument, using Lemma 5.8, Proposition 5.6 and
Eq. (16), we can construct a sequence of compatible subspaces Sn; n 2 N;
such that Snþ1 � Sn and jjPA;Sn jj ! 1: We can also get that PSn !

SOT 0 by
interlacing, before constructing the subspace Snþ1; a spectral subspace Tn

of PSnAPSn (as an operator in LðSnÞ), in such a way that PTnAPTn is not
invertible and the projections PTn !

SOT 0 (this can be done recursively by
testing the projections PTn in the first n elements of a countable dense subset
of H), and taking Snþ1 as a subspace of Tn: Note that the pairs ðPSnA
PSn ;TnÞ are clearly compatible, so that also the pairs ðA;TnÞ are compatible
by Proposition 5.6.

Remark 5.9. Recall from Remark 4.4 that if ðA;SÞ is compatible, then
Að1 
 PA;SÞ ¼ SðP ;AÞ: Then

04APA;S ¼ A
 SðP ;AÞ4A:

This implies that jjAPA;Sjj4jjAjj; while jjPA;Sjj can be arbitrarily large.

6. SOME EXAMPLES

In this section, we present several examples of pairs ðA;SÞ which are not
compatible and pairs ðA;SÞ which are compatible and such that the spline
projector PA;S can be explicitly computed. Observe that Example 6.4 cannot
be studied under the closed range hypothesis, considered by Atteia, de Boor
and Izumino.

Example 6.1. Let A 2 LðHÞþ and

M ¼
A A1=2

A1=2 I

 !
¼

A1=2 0

I 0

 !
A1=2 I

0 0

 !
2 LðH�HÞþ:

Denote by S ¼ H� f0g and by N ¼ A1=2

0
I
0

� �
: Since M ¼ NnN ; then ker

M ¼ ker N ¼ fx�
A1=2x: x 2 Hg which is the graph of 
A1=2: Note that
RðN Þ ¼ ðRðA1=2Þ þ RðIÞÞ � f0g ¼ S; so that RðMÞ is also closed. If A is
injective with non-closed range, then ðM ;SÞ is not compatible (because RðAÞ
is properly included in RðA1=2Þ). Observe that this implies that the inclination
between S and ker M is one, cf. [4].

Remark 6.2. Let P 2 P; RðP Þ ¼ S and A ¼ a
bn

b
c

� �
2 LðHÞþ: It is well

known that the positivity of A implies that RðbÞ � Rða1=2Þ: Therefore, if
dimS51 then the pair ðA;SÞ is compatible : in fact in this case RðaÞ ¼
RðPAP Þ must be closed, so RðbÞ � Rða1=2Þ ¼ RðaÞ and Corollary 2.2, can be
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applied. On the other hand, if dimS?51 and RðAÞ is closed then, by
Remark 2.4, ðA;SÞ is compatible. However, if RðAÞ is not closed, then the
pair ðA;SÞ can be non-compatible:

Proposition 6.3. Let P 2 P; RðP Þ ¼ S and A 2 LðHÞþ: Suppose that A
is injective non-invertible and dimS?51: Then ðA;SÞ is compatible if and

only if S? � RðAÞ:

Proof. By Eq. (2), ðA;SÞ is compatible if and only if A
1ðS?Þ þS ¼
H: Since A is injective, Eq. (3) says that A
1ðS?Þ \S ¼ f0g: Now the
result becomes clear because dim A
1ðS?Þ ¼ dim ðS? \ RðAÞÞ: ]

Example 6.4. Let T 2 LðH;L2Þ given by Tem ¼ eiðmþ1Þt

m ; where em ðm 2 NÞ
is an orthonormal basis of H: Then A ¼ T nT is given by Aem ¼ em

m2; which is
injective non-invertible. Let x1; . . . ; xn 2 RðAÞ; denote by S ¼ fx1; . . . ; xng

?

and P ¼ PS: If xi ¼ ðxð1Þi ; xð2Þi ; . . . ; xðmÞi ; . . .Þ; 14i4n; denote by

Zi ¼ ðxð1Þi ; 4xð2Þi ; . . . ;m2xðmÞi ; . . .Þ 2 H; 14i4n;

and Q the orthogonal projection onto the subspace T generated by

Z1; . . . ; Zn: It is clear that T ¼ A
1ðS?Þ: Then ðA;SÞ is compatible and PA;S
is the projection onto S with kernel T: Therefore (cf. [5] or [17]), jjPQjj51;

PA;S ¼ ð1 
 QP Þ
1ð1 
 QÞ ¼
X1

k¼0
ðQP Þkð1 
 QÞ

and jjPA;Sjj ¼ jj1 
 PA;Sjj ¼ ð1 
 jjPQjj2Þ
1=2:

Remark 6.5. Let B 2 LðHÞþ be injective and non-invertible. Let x 2 H
be a unit vector, S ¼ fxg?; P ¼ PS and Px ¼ 1 
 P : Let B ¼ a

bn
b
c

� �
in

terms of P : By Proposition 6.3, ðB;SÞ is compatible if and only if x 2 RðBÞ:
Note that the sequence xn (in RðBÞ) of Lemma 5.8 converges to x =2 RðBÞ: This
is, precisely, the fact which implies that jjPB;fxng? jj converges to infinity.

Example 6.6. Fix S a closed subspace of H and consider the set

AS ¼ fA 2 LðHÞþ: the pair ðA;SÞ is compatibleg

and the map a: AS ! Q given by aðAÞ ¼ PA;S: We shall see that a is not
continuous. Indeed, let A ¼ a

bn
b
c

� �
; and suppose that RðbÞ ¼ RðaÞ is a closed

subspace M properly included in S: Denote by N ¼ S�M and consider
the projection PN and some element u 2 LðS?;NÞ � LðHÞ; u=0: Consider,
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for every n 2 N;

An ¼Aþ
1

n
ðPN þ uÞnðPN þ uÞ ¼ Aþ

1

n
¼

1 0 u

0 0 0

un 0 unu

0
B@

1
CA

N

M

S?

¼

1
n 0 1

n u

0 a b
1
n u

n bn cþ 1
n u

nu

0
B@

1
CA5A50:

It is clear that An ! A: Note that a is invertible in LðMÞ: Then, by Theorem
2.3,

PA;S ¼

1 0 0

0 1 a
1b

0 0 0

0
B@

1
CA

N

M

S?

;

Also aþ 1
nPN is invertible in LðSÞ for every n 2 N: Then,

PAn;S ¼

n 0 0

0 a
1 0

0 0 0

0
B@

1
CA

1
n 0 1

n u

0 a b
1
n u

n bn cþ 1
n u

nu

0
B@

1
CA

¼

1 0 u

0 1 a
1b

0 0 0

0
B@

1
CA

N

M

S?

for all n 2 N: Therefore, aðAnÞ ¼ PAn;SPA;S ¼ aðAÞ: Note that the sequence
aðAnÞ converges (actually, it is constant) to PA;S þ u; which belongs to
PðA;SÞ by Theorem 2.3.
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