Oblique Projections and Abstract Splines

G. Corach ${ }^{1,2}$
Instituto Argentino de Matemática, Saavedra 15 Piso 3 (1083), Buenos Aires, Argentina and Departamento de Matematica, Facultad de Ingenieria, Paseo Colon 850, Buenos Aires, Argentina
E-mail : gcorach@dm.uba.ar

A. Maestripieri

Instituto de Ciencias, UNGS, Roca 850 (1663) San Miguel, Argentina
E-mail : amaestri@ungs.edu.ar
and

D. Stojanoff ${ }^{3}$

Departamento de Matemática, FCE-UNLP, 115 y 50 (1900) La Plata, Argentina
E-mail : demetrio@mate.unlp.edu.ar
Communicated by Frank Deutsch
Received October 31, 2000; accepted in revised form April 1, 2002

Given a closed subspace \mathscr{S} of a Hilbert space \mathscr{H} and a bounded linear operator $A \in L(\mathscr{H})$ which is positive, consider the set of all A-self-adjoint projections onto \mathscr{S} :

$$
\mathscr{P}(A, \mathscr{S})=\left\{Q \in L(\mathscr{H}): Q^{2}=Q, \quad Q(\mathscr{H})=\mathscr{S}, A Q=Q^{*} A\right\}
$$

In addition, if \mathscr{H}_{1} is another Hilbert space, $T: \mathscr{H} \rightarrow \mathscr{H}_{1}$ is a bounded linear operator such that $T^{*} T=A$ and $\xi \in \mathscr{H}$, consider the set of (T, \mathscr{S}) spline interpolants to ξ :

$$
s p(T, \mathscr{S}, \xi)=\left\{\eta \in \xi+\mathscr{S}:\|T \eta\|=\min _{\sigma \in \mathscr{\mathscr { H }}}\|T(\xi+\sigma)\|\right\} .
$$

A strong relationship exists between $\mathscr{P}(A, \mathscr{S})$ and $\operatorname{sp}(T, \mathscr{S}, \xi)$. In fact, $\mathscr{P}(A, \mathscr{P})$ is not empty if and only if $\operatorname{sp}(T, \mathscr{S}, \xi)$ is not empty for every $\xi \in \mathscr{H}$. In this case, for any $\xi \in \mathscr{H} \backslash \mathscr{S}$ it holds

$$
s p(T, \mathscr{S}, \xi)=\{(1-Q) \xi: Q \in \mathscr{P}(A, \mathscr{S})\}
$$

${ }^{1}$ To whom correspondence should be addressed.
${ }^{2}$ Partially supported by CONICET (PIP 4463/96), Universidad de Buenos Aires (UBACYT TX92 and TW49).
${ }^{3}$ Partially supported by CONICET (PIP 4463/96), Universidad de Buenos Aires (UBACYT TW49).
and for any $\xi \in \mathscr{H}$, the unique vector of $\operatorname{sp}(T, \mathscr{S}, \xi)$ with minimal norm is $\left(1-P_{A, \mathscr{G}}\right) \xi$, where $P_{A, \mathscr{G}}$ is a distinguished element of $\mathscr{P}(A, \mathscr{P})$. These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Given two Hilbert spaces \mathscr{H} and $\mathscr{H}_{1}, T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right), \mathscr{S} \subseteq \mathscr{H}$ a closed subspace and $\xi \in \mathscr{H}$, an abstract spline or a (T, \mathscr{S})-spline interpolant to ξ is any element of the set

$$
s p(T, \mathscr{S}, \xi)=\left\{\eta \in \xi+\mathscr{S}:\|T \eta\|=\min _{\sigma \in \mathscr{S}}\|T(\xi+\sigma)\|\right\} .
$$

Observe that $A=T^{*} T=|T|^{2}$, as a positive bounded operator on \mathscr{H}, defines a semiinner product $\langle\cdot, \cdot\rangle_{A}: \mathscr{H} \times \mathscr{H} \rightarrow \mathbb{C}$ by $\langle\xi, \eta\rangle_{A}=\langle A \xi, \eta\rangle, \xi, \eta \in \mathscr{H}$ and a corresponding seminorm $\|\cdot\|_{A}: \mathscr{H} \rightarrow \mathbb{R}^{+}$given by $\|\eta\|_{A}=\langle\eta, \eta\rangle_{A}^{1 / 2}=$ $\langle A \eta, \eta\rangle^{1 / 2}=\|T \eta\|$. Thus, if for any $\eta \in \mathscr{H}$ we consider $d_{A}(\eta, \mathscr{S})=\inf _{\sigma \in \mathscr{S}} \| \eta$ $+\sigma \|_{A}$, then

$$
s p(T, \mathscr{S}, \xi)=\left\{\eta \in \xi+\mathscr{S} ;\|\eta\|_{A}=d_{A}(\xi, \mathscr{S})\right\}
$$

If A is an invertible operator, then \langle,\rangle_{A} is a scalar product, $\left(\mathscr{H},\langle,\rangle_{A}\right)$ is a Hilbert space and, by the projection theorem, $d_{A}(\xi, \mathscr{S})=\left\|\left(I-P_{A, \mathscr{S}}\right) \xi\right\|_{A}$ and $\operatorname{sp}(T, \mathscr{S}, \xi)=\left\{\left(I-P_{A, \mathscr{S}}\right) \xi\right\}$, where $P_{A, \mathscr{S}}$ is unique orthogonal projection onto \mathscr{S} which is orthogonal to the inner product \langle,\rangle_{A}. However, if A is not invertible then $\|\cdot\|_{A}$ is or a seminorm or an incomplete norm and we cannot use the projection theorem unless we complete the quotient $\mathscr{H} / \mathrm{ker} A$. One of the main goals of this paper is to get a simpler way of describing the set $s p(T, \mathscr{S}, \xi)$.

We start with a positive bounded linear operator A on a Hilbert space \mathscr{H} and a closed subspace \mathscr{S} of \mathscr{H}. The subspace $\mathscr{S}^{\perp_{A}}=\{\xi:\langle A \xi, \eta\rangle=0 \forall$ $\eta \in \mathscr{S}\}$ is called the A-orthogonal companion of \mathscr{S}. Note the identities

$$
\begin{equation*}
\mathscr{S}^{\perp_{A}}=A^{-1}\left(\mathscr{S}^{\perp}\right)=A(\mathscr{S})^{\perp}=\operatorname{ker}(P A) . \tag{1}
\end{equation*}
$$

Instead of defining adjoint operators with respect to \langle,\rangle_{A}, we restrict our discussion to A-self-adjoint operators, i.e. $W \in L(\mathscr{H})$ such that $A W=W^{*} A$. Note that any such W satisfies $\langle W \xi, \eta\rangle_{A}=\langle\xi, W \eta\rangle_{A}, \xi, \eta \in \mathscr{H}$.

The pair (A, \mathscr{S}) is said to be compatible if there exists a projection $Q \in$ $L(\mathscr{H})$ such that $Q(\mathscr{H})=\mathscr{S}$ and $A Q=Q^{*} A$. The main result in this paper is the description of the relationship between the set

$$
\mathscr{P}(A, \mathscr{S})=\left\{Q \in \mathscr{Q}: R(Q)=\mathscr{S}, A Q=Q^{*} A\right\}
$$

and $\operatorname{sp}(T, \mathscr{S}, \xi)$, where $T: \mathscr{H} \rightarrow \mathscr{H}_{1}$ is any bounded linear operator such that $T^{*} T=A$. A relevant point here is that this method allows to tackle the case of operators with non-closed range. Thus, several results by Atteia [3], Sard [18], Golomb [11], Shekhtman [19], de Boor [4], Izumino [13], Delvos [9], Deutsch [8] are generalized to any bounded linear operators T.

If (A, \mathscr{S}), is compatible, there exists a distinguished element $P_{A, \mathscr{S}} \in \mathscr{P}(A, \mathscr{S})$. The study of the map $(A, \mathscr{S}) \rightarrow P_{A, \mathscr{S}}$ was initiated by Pasternak-Winiarski [15] at least for invertible A. A geometrical description of that map can be found in [2]. In [7, 12] the inversibility hypothesis on A was removed, opening, in that way, the possibility that $\mathscr{P}(A, \mathscr{S})$ be empty or have many elements. This induces the notion of compatibility of a pair (A, \mathscr{S}). This paper is mainly devoted to explore the relationship of the compatibility of (A, \mathscr{S}) with the existence of spline interpolants for every $\xi \in \mathscr{H}$. Section 2 contains a short study on compatibility of a pair (A, \mathscr{S}). If (A, \mathscr{S}) is compatible, the properties of the distinguished element $P_{A, \mathscr{S}} \in \mathscr{P}(A, \mathscr{S})$ are described. In Section 3, we show that (A, \mathscr{S}) is compatible if and only if $\operatorname{sp}(T, \mathscr{S}, \xi)$ is not empty for any $\xi \in \mathscr{H}$ and that $\operatorname{sp}(T, \mathscr{S}, \xi)=\{(1-Q) \xi: Q \in \mathscr{P}(A, \mathscr{S})\}$ for any $\xi \in \mathscr{H} \backslash \mathscr{S}$. Moreover, the vector of $\operatorname{sp}(T, \mathscr{S}, \xi)$ with minimal norm is exactly $\left(1-P_{A, \mathscr{S}}\right) \xi$. In Section 4, we present some characterizations of $P_{A, \mathscr{S}}$ which are useful for the study of the convergence of $\left\{P_{A, \mathscr{S}_{n}} \xi\right\}$ if $\left(A, \mathscr{S}_{n}\right)$ is compatible for every $n \in \mathbb{N}$ and \mathscr{S}_{n} decreases to 0 . This study is the goal of Section 5 . Finally, Section 6 includes several examples of compatibility and spline projections.

In this paper, $L(\mathscr{H})$ is the algebra of all linear bounded operators on the Hilbert space \mathscr{H} and $L(\mathscr{H})^{+}$is the subset of $L(\mathscr{H})$ of all self-adjoint positive (i.e., non-negative definite) operators. For every $C \in L(\mathscr{H})$ its range is denoted by $R(C)$. If $R(C)$ is closed, then C^{\dagger} denotes the Moore-Penrose pseudoinverse of C. The orthogonal projections onto a closed subspace \mathscr{S} is denoted by $P_{\mathscr{S}}$. The direct sum of subspaces \mathscr{S} and \mathscr{T} is denoted $\mathscr{S} \dot{+} \mathscr{T}$. Finally, $\mathscr{S} \ominus \mathscr{T}$ denotes $\mathscr{S} \cap \mathscr{T}^{\perp}$.

2. A-SELF-ADJOINT PROJECTIONS

Throughout this paper \mathscr{S} denotes a closed subspace of \mathscr{H} and A is a fixed operator in $L(\mathscr{H})^{+}$. Recall that $\mathscr{S}^{\perp_{A}}=A^{-1}\left(\mathscr{S}^{\perp}\right)$. It is easy to see that a projection Q belongs to $\mathscr{P}(A, \mathscr{S})$ if and only if $R(Q)=\mathscr{S}$ and ker $Q \subseteq A^{-1}\left(\mathscr{S}^{\perp}\right)$. Then

$$
\begin{equation*}
\text { the pair }(A, \mathscr{S}) \text { is compatible if and only if } \mathscr{S}+A^{-1}\left(\mathscr{S}^{\perp}\right)=\mathscr{H} \tag{2}
\end{equation*}
$$

In this case, $\mathscr{P}(A, \mathscr{S})$ has a single element if and only if $\operatorname{ker} A \cap \mathscr{S}=\{0\}$ because

$$
\begin{equation*}
\mathscr{S} \cap A^{-1}\left(\mathscr{S}^{\perp}\right)=\operatorname{ker} A \cap \mathscr{S} \tag{3}
\end{equation*}
$$

If (A, \mathscr{S}) is compatible, then there is a distinguished element in $\mathscr{P}(A, \mathscr{P})$, namely the unique projection $P_{A, \mathscr{S}}$ onto \mathscr{S} with kernel $A^{-1}\left(\mathscr{S}^{\perp}\right) \ominus(\operatorname{ker} A \cap \mathscr{S})$. The elements of $\mathscr{P}(A, \mathscr{S})$ can be parametrized by the set of relative supplements of $\operatorname{ker} A \cap \mathscr{S}$ into $A^{-1}\left(\mathscr{S}^{\perp}\right)$.

The set $\mathscr{P}(A, \mathscr{S})$ can also be characterized using the matrix operator decomposition induced by the orthogonal projection $P=P_{\mathscr{L}}$. Under this representation, A has a matrix form

$$
A=\left(\begin{array}{cc}
a & b \tag{4}\\
b^{*} & c
\end{array}\right)
$$

where $a \in L(\mathscr{S})^{+}, b \in L\left(\mathscr{S}^{\perp}, \mathscr{S}\right)$ and $c \in L\left(\mathscr{S}^{\perp}\right)^{+}$. Observe that $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, $P A=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ and $P A P=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$. Every projection Q with range \mathscr{S} has the matrix form $Q=\left(\begin{array}{ll}1 & x \\ 0 & 0\end{array}\right)$ for some $x \in L\left(\mathscr{S}^{\perp}, \mathscr{S}\right)$. It is easy to see that $Q \in$ $\mathscr{P}(A, \mathscr{S})$ if and only if x satisfies the equation $a x=b$. Then

$$
\mathscr{P}(A, \mathscr{S})=\left\{Q=\left(\begin{array}{ll}
1 & x \tag{5}\\
0 & 0
\end{array}\right): x \in L\left(\mathscr{S}^{\perp}, \mathscr{S}\right) \text { and } a x=b\right\} .
$$

Note that Eq. (5) implies that if (A, \mathscr{S}) is compatible, then $R(b) \subseteq R(a)$. As a corollary of a well-known theorem of R.G. Douglas, it can be shown that these two conditions are, indeed, equivalent. First, we recall Douglas' theorem [10]:

Theorem 2.1. Let $B, C \in L(\mathscr{H})$. Then the following conditions are equivalent:

1. $R(B) \subseteq R(C)$.
2. There exists a positive number λ such that $B B^{*} \leqslant \lambda C C^{*}$.
3. There exists $D \in L(\mathscr{H})$ such that $B=C D$.Moreover, there exists a unique operator D which satisfies the conditions

$$
B=C D, \quad \operatorname{ker} D=\operatorname{ker} B \quad \text { and } \quad R(D) \subseteq \overline{R\left(C^{*}\right)} .
$$

In this case, $\|D\|^{2}=\inf \left\{\lambda: B B^{*} \leqslant \lambda C C^{*}\right\} ; D$ is called the reduced solution of the equation $C X=B$. If $R(C)$ is closed, then $D=C^{\dagger} B$.

Corollary 2.2. Let $A \in L(\mathscr{H})^{+}$and $\mathscr{S} \subseteq \mathscr{H}$ a closed subspace. If A has matrix form as in (4), then (A, \mathscr{S}) is compatible if and only if $R(b) \subseteq$ $R(a)$.

The next theorem describes some properties of $\mathscr{P}(A, \mathscr{P})$ and $P_{A, \mathscr{S}}$. The norm of $P_{A, \mathscr{S}}$ will be computed in Section 5.

Theorem 2.3. Let $A \in L(\mathscr{H})^{+}$with matrix form (4), such that the pair (A, \mathscr{S}) is compatible.

1. The distinguished projection $P_{A, \mathscr{S}} \in \mathscr{P}(A, \mathscr{P})$ has the matrix form

$$
P_{A, \mathscr{S}}=\left(\begin{array}{ll}
1 & d \\
0 & 0
\end{array}\right)
$$

where $d \in L\left(\mathscr{S}^{\perp}, \mathscr{S}\right)$ is the reduced solution of the equation $a x=b$.
2. $\mathscr{P}(A, \mathscr{S})$ is an affine manifold which can be parametrized as

$$
\mathscr{P}(A, \mathscr{S})=P_{A, \mathscr{S}}+L\left(\mathscr{S}^{\perp}, \mathscr{N}\right)
$$

where $\mathscr{N}=A^{-1}\left(S^{\perp}\right) \cap \mathscr{S}=\operatorname{ker} A \cap \mathscr{S}$ and $L\left(\mathscr{S}^{\perp}, \mathcal{N}\right)$ is viewed as a subspace of $L(\mathscr{H})$. A matrix representation of this parametrization is

$$
\mathscr{P}(A, \mathscr{S}) Q=P_{A, \mathscr{S}}+z=\left(\begin{array}{lll}
1 & 0 & d \tag{6}\\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right) \begin{aligned}
& \mathscr{S} \ominus \mathscr{N} . \\
& \mathscr{N} \\
& \mathscr{S}^{\perp}
\end{aligned} .
$$

3. $P_{A, \mathscr{S}}$ has minimal norm in $\mathscr{P}(A, \mathscr{S})$, i.e. $\left\|P_{A, \mathscr{S}}\right\|=\min \{\|Q\|: Q \in$ $\mathscr{P}(A, \mathscr{P})\}$.

Proof.

(1) If $Q=\left(\begin{array}{ll}1 & d \\ 0 & 0\end{array}\right)$, then $Q \in \mathscr{P}(A, \mathscr{S})$ and $\operatorname{ker} Q \subseteq A^{-1}\left(\mathscr{S}^{\perp}\right)$. Since $P_{A, \mathscr{S}}$ is characterized by the properties $R\left(P_{A, \mathscr{S}}\right)=\mathscr{S}$ and $\operatorname{ker} P_{A, \mathscr{S}}=A^{-1}\left(\mathscr{S}^{\perp}\right) \ominus \mathscr{N}$ then, in order to show that $Q=P_{A, \mathscr{S}}$ it suffices to prove that ker $Q \subseteq \mathcal{N}^{\perp}$. Let $\xi \in \operatorname{ker} Q$ and write $\xi=\xi_{1}+\xi_{2}$ with $\xi_{1} \in \mathscr{S}$ and $\xi_{2} \in \mathscr{S}^{\perp}$. Then $0=$ $Q \xi=\xi_{1}+d \xi_{2}$. If $\eta \in \mathscr{N}$, then $\langle\xi, \eta\rangle=\left\langle\xi_{1}, \eta\right\rangle=-\left\langle d \xi_{2}, \eta\right\rangle=0$ because, by Theorem 2.1, $R(d) \subseteq \overline{R(a)}$ and, as an operator in $L(\mathscr{S})$, ker $a=\mathscr{S} \cap \operatorname{ker} P A P$ $=\mathscr{S} \cap \operatorname{ker} A=\mathscr{N}$.
(2) Let $Q=\left(\begin{array}{ll}1 & y \\ 0 & 0\end{array}\right)$ with $y \in L\left(\mathscr{S}^{\perp}, \mathscr{S}\right)$ and let $d \in L\left(\mathscr{S}^{\perp}, \mathscr{S}\right)$ be the reduced solution of the equation $a x=b$. Then $Q \in \mathscr{P}(A, \mathscr{S})$ if and only if $a y=b$. Therefore, if $z=y-d$, then $Q \in \mathscr{P}(A, \mathscr{S})$ if and only if $Q=P_{A, \mathscr{S}}+z$ and $R(z) \subseteq \operatorname{ker} a=\mathscr{N}$. Concerning the matrix representation (6), recall that $R(d) \subseteq \overline{R(a)}=(\text { ker } a)^{\perp}=\mathscr{S} \ominus \mathscr{N}$. Therefore,

$$
Q=P_{A, \mathscr{Y}}+z=\left(\begin{array}{lll}
1 & 0 & d \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \begin{aligned}
& \mathscr{S} \ominus \mathscr{N} \\
& \mathscr{N} \\
& \mathscr{S}^{\perp}
\end{aligned}
$$

(3) If $Q \in \mathscr{P}(A, \mathscr{S})$ has the matrix form given in Eq. (6), then

$$
\|Q\|^{2}=\left\|Q Q^{*}\right\|=1+\left\|\left(\begin{array}{ccc}
0 & 0 & d \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)\right\|^{2} \geqslant 1+\|d\|^{2}=\left\|P_{A, \mathscr{S}}\right\|^{2}
$$

Remark 2.4. Under additional hypothesis on A, other characterizations of compatibility can be used. We mention a sample of these, taken from [6, 7]:

1. If A is injective then the following conditions are equivalent: (a)The pair (A, \mathscr{S}) is compatible. (b) $\mathscr{S}^{\perp} \subseteq R(A+\lambda(1-P)$) for some (and then for any) $\lambda>0$. (c) $P(\overline{A(\mathscr{S})})=\mathscr{S}$ and $\overline{A(\mathscr{S})} \cap \mathscr{S}^{\perp}=\{0\}$.
2. If A has closed range then the following conditions are equivalent: (a)The pair (A, \mathscr{S}) is compatible. (b) $R(P A P)$ is closed. (c) $\mathscr{P}+\operatorname{ker} A$ is closed.
3. If $R(P A P)$ is closed (or, equivalently, if $R\left(P A^{1 / 2}\right)$ or $A^{1 / 2}(\mathscr{S})$ are closed), then (A, \mathscr{S}) is compatible. Indeed, using the matrix form (4), the positivity of A implies that $R(b) \subseteq R\left(a^{1 / 2}\right.$) (see, e.g., [1]). If $R(P A P)=R(a)$ is closed, then $R(b) \subseteq R\left(a^{1 / 2}\right)=R(a)$ so that (A, \mathscr{S}) is compatible by Corollary 2.2.

3. SPLINES AND A-SELF-ADJOINT PROJECTIONS

In this section, we characterize the existence of splines in terms of the existence of A-self-adjoint projections. The first result extends a theorem of Izumino [13] to operators whose ranges are not necessarily closed.

Proposition 3.1. Let $T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right), A=T^{*} T \in L(\mathscr{H})$ and $\mathscr{S} \subseteq \mathscr{H}$ a closed subspace. Then, for any $\xi \in \mathscr{H}$,

$$
s p(T, \mathscr{S}, \xi)=(\xi+\mathscr{S}) \cap \mathscr{S}^{\perp_{A}}
$$

In particular, $\operatorname{sp}(T, \mathscr{S}, \xi)$ is an affine manifold of $L(\mathscr{H})$ and, if $\eta \in s p$, $(T \mathscr{S}, \xi)$, then $\operatorname{sp}(T, \mathscr{S}, \xi)=\eta+\operatorname{ker} T \cap \mathscr{S}$.

Proof. Suppose that $\eta \in(\xi+\mathscr{S}) \cap A^{-1}\left(\mathscr{S}^{\perp}\right)$ and $\sigma \in \mathscr{S}$. Then $\langle A \eta, \sigma\rangle$ $=\langle A \sigma, \eta\rangle=0$ and

$$
\|T(\eta+\sigma)\|^{2}=\langle A(\eta+\sigma), \eta+\sigma\rangle=\langle A \eta, \eta\rangle+\langle A \sigma, \sigma\rangle \geqslant\langle A \eta, \eta\rangle=\|T \eta\|^{2} .
$$

Therefore, $\eta \in \operatorname{sp}(T, \mathscr{S}, \xi)$. Conversely, if $\eta \in s p(T, \mathscr{S}, \xi)$ and $\sigma \in \mathscr{S}$, then, for any $t \in \mathbb{R}$,

$$
\begin{aligned}
\|T \eta\|^{2} \leqslant\|T(\eta+t \sigma)\|^{2} & =\langle A(\eta+t \sigma), \eta+t \sigma\rangle \\
& =\langle A \eta, \eta\rangle+t^{2}\langle A \sigma, \sigma\rangle+2 t \operatorname{Re}\langle A \eta, \sigma\rangle \\
& =\|T \eta\|^{2}+t^{2}\langle A \sigma, \sigma\rangle+2 t \operatorname{Re}\langle A \eta, \sigma\rangle
\end{aligned}
$$

therefore $t^{2}\langle A \sigma, \sigma\rangle+2 t \operatorname{Re}\langle A \eta, \sigma\rangle \geqslant 0$ for all $t \in \mathbb{R}$ and a standard argument shows that $\langle A \eta, \sigma\rangle=0$ and then $\eta \in(\xi+\mathscr{S}) \cap A^{-1}\left(\mathscr{S}^{\perp}\right)$.

Theorem 3.2. Let $T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right), A=T^{*} T \in L(\mathscr{H})$ and $\mathscr{S} \subseteq \mathscr{H}$ a closed subspace.

1. If $\xi \in \mathscr{H}, s p(T, \mathscr{S}, \xi)$ is not empty $\xi \in \mathscr{S}+A^{-1}\left(\mathscr{S}^{\perp}\right)$.
2. The following conditions are equivalent: (a)sp($T, \mathscr{S}, \xi)$ is not empty for every $\xi \in \mathscr{H}$. (b) $\mathscr{S}+A^{-1}\left(\mathscr{S}^{\perp}\right)=\mathscr{H}$. (c)The pair (A, \mathscr{S}) is compatible.
3. If (A, \mathscr{S}) is compatible and $\xi \in \mathscr{H} \backslash \mathscr{S}$, it holds $\operatorname{sp}(T, \mathscr{S}, \xi)=$ $\{(I-Q)\}: Q \in \mathscr{P}(A, \mathscr{S})\}$.
4. If (A, \mathscr{S}) is compatible, then for every $\xi \in \mathscr{H},\left(I-P_{A, \mathscr{S}}\right) \xi$ is the unique vector in $\operatorname{sp}(T, \mathscr{S}, \xi)$ with minimal norm.

Proof. The first assertion follows directly from Proposition 3.1. Indeed, if $\eta \in s p(T, \mathscr{S}, \xi)$ and $\eta=\xi+\sigma$ with $\sigma \in \mathscr{S}$, then $\xi=-\sigma+\eta \in \mathscr{S}+$ $A^{-1}\left(\mathscr{S}^{\perp}\right)$; the converse implication is similar. The second assertion follows from the first one and Eq. (2). In order to prove the third item, let $\xi \in \mathscr{H}$ and $Q \in \mathscr{P}(A, \mathscr{P})$. Then, by Proposition 3.1 and Eq. (2),

$$
(I-Q) \xi=\xi-Q \xi \in(\xi+\mathscr{S}) \cap \operatorname{ker} Q \subseteq(\xi+\mathscr{S}) \cap A^{-1}\left(\mathscr{S}^{\perp}\right)=\operatorname{sp}(T, \mathscr{S}, \xi)
$$

Conversely, let $\eta \in \operatorname{sp}(T, \mathscr{S}, \xi)$ and $\sigma \in \mathscr{S}$ such that $\xi=\sigma+\eta$. We are looking for some $Q \in \mathscr{P}(A, \mathscr{S})$ such that $Q \xi=\sigma$. Let $\eta_{1}=\left(I-P_{A, \mathscr{S}}\right) \xi$ and $\sigma_{1}=\xi-\eta_{1}=P_{A, \mathscr{S}} \xi \in \mathscr{S}$. Then, by Proposition 3.1,

$$
\sigma-\sigma_{1}=\eta_{1}-\eta \in \mathscr{S} \cap A^{-1}\left(\mathscr{S}^{\perp}\right)=\operatorname{ker} A \cap \mathscr{S}
$$

If $\xi=\sigma_{2}+\rho$ with $\sigma_{2} \in \mathscr{S}$ and $0 \neq \rho \in \mathscr{S}^{\perp}$, choose $z \in L\left(\mathscr{S}^{\perp}\right.$, $\left.\operatorname{ker} A \cap \mathscr{S}\right)$ $(\subseteq L(\mathscr{H}))$ such that $z(\rho)=\sigma-\sigma_{1}$. By Theorem 2.3, $Q=P_{A, \mathscr{S}}+z \in \mathscr{P}(A, \mathscr{S})$ and clearly $Q \xi=\sigma$.

The minimality of $\left\|\left(1-P_{A, \mathscr{S}}\right) \xi\right\|$ is proved as follows. If $\xi \in \mathscr{S}$, then $\left(I-P_{A, \mathscr{S}}\right) \xi=0$, which must be minimal. If $\xi \notin \mathscr{S}$, let $\xi=\sigma_{2}+\rho$ with $\sigma_{2} \in \mathscr{S}$ and $0 \neq \rho \in \mathscr{S}^{\perp}$. By Theorem 2.3, any $Q \in \mathscr{P}(A, \mathscr{S})$ has the form $Q=P_{A, \mathscr{S}}+z$, with $z \in L\left(\mathscr{S}^{\perp}, \operatorname{ker} A \cap \mathscr{S}\right)(\subseteq L(\mathscr{H}))$. Recall that $R\left(P_{A, \mathscr{S}}\right)=\mathscr{S} \ominus(\operatorname{ker} A \cap$
$\mathscr{S})$. Therefore,

$$
\begin{aligned}
\|(I-Q) \xi\|^{2} & =\|(I-Q) \rho\|^{2}=\left\|\rho-P_{A, \mathscr{S}}(\rho)-z(\rho)\right\|^{2}=\|\rho\|^{2}+\left\|P_{A, \mathscr{S}}(\rho)\right\|^{2}+\|z(\rho)\|^{2} \\
& \geqslant\|\rho\|^{2}+\left\|P_{A, \mathscr{S}}(\rho)\right\|^{2}=\left\|\rho-P_{A, \mathscr{S}}(\rho)\right\|^{2}=\left\|\left(I-P_{A, \mathscr{S}}\right) \xi\right\|^{2} .
\end{aligned}
$$

Corollary 3.3. Let $T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right), A=T^{*} T \in L(\mathscr{H})$ and $\mathscr{S} \subseteq \mathscr{H} a$ closed subspace. Then the following are equivalent:

1. $\operatorname{sp}(T, \mathscr{S}, \xi)$ has a unique element for every $\xi \in \mathscr{H}$.
2. The pair (A, \mathscr{S}) is compatible and $\operatorname{ker} T \cap \mathscr{S}=\{0\}$.

Remark 3.4. Let $T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right), A=T^{*} T \in L(\mathscr{H})$ and $\mathscr{S} \subseteq \mathscr{H}$ a closed subspace.

1. If (A, \mathscr{S}) is compatible then, by item 4 of Theorem 3.2, the projection $1-P_{A, \mathscr{L}}$ coincides with the so-called spline projection for T and \mathscr{S} when T has a closed range.
2. If $R(T)$ is closed, then, by Remark 2.4 and Theorem 3.2, $s p(T, \mathscr{S}$, $\xi) \neq \emptyset$ for every $\xi \in \mathscr{H}$ if and only if ker $T+\mathscr{S}$ is closed. In case that $\operatorname{ker} T \cap \mathscr{S}=\{0\}$, then it is equivalent to the condition that the inclination between $\operatorname{ker} T$ and \mathscr{S} is less than one (see [4, 8]).
3. If $\xi \in \mathscr{S}$, then $\operatorname{sp}(T, \mathscr{S}, \xi)=\operatorname{ker} T \cap \mathscr{S}$. On the other hand, $(I-Q) \xi=0$ for every $Q \in \mathscr{P}(A, \mathscr{S})$. So the equality of item 3 of Theorem 3.2 may be false in this case.

4. CHARACTERIZATIONS OF THE SPLINE PROJECTION $P_{A, \mathscr{S}}$

Fix $A \in L(\mathscr{H})^{+}$and a closed subspace $\mathscr{S} \subseteq \mathscr{H}$. As before, we denote $P=$ $P_{\mathscr{G}}$. In this section, two different descriptions of the spline projection $P_{A, \mathscr{S}}$ are given and, as a consequence, we relate $P_{A, \mathscr{S}}$ with the shorted operator (see [1] and Remark 4.4 below).

By Corollary 2.2, it holds that the pair (A, \mathscr{S}) is compatible if and only if $R(P A) \subseteq R(P A P)$. In case that A is invertible, it is known (see [2]) that, in the matrix form (4), a is invertible in $L(\mathscr{S})$ and

$$
P_{A, \mathscr{S}}=\left(\begin{array}{cc}
a^{-1} & 0 \tag{7}\\
0 & 0
\end{array}\right) \quad P A=\left(\begin{array}{cc}
1 & a^{-1} b \\
0 & 0
\end{array}\right)
$$

because $a^{-1} b$ is the reduced solution of $a x=b$ (see Theorem 2.3). Rewriting (7), we get $(P A P) P_{A, \mathscr{S}}=P A$. Thus, if A is invertible, $P_{A, \mathscr{S}}$ is the reduced solution of the equation $(P A P) X=P A$. Let us consider the general case, in other words, if the pair (A, \mathscr{S}) is compatible, let us relate $P_{A, \mathscr{S}}$ with the
reduced solution Q of the equation

$$
\begin{equation*}
(P A P) X=P A \tag{8}
\end{equation*}
$$

Observe that, in general, $\overline{R(P A P)}$ is strictly contained in \mathscr{S}. Therefore, $R(Q)$ may be smaller that $\mathscr{S}=R\left(P_{A, \mathscr{S}}\right)$.

Proposition 4.1. If the pair (A, \mathscr{S}) is compatible, Q is the reduced solution of Eq. (8) and $\mathscr{N}=\operatorname{ker} A \cap \mathscr{S}$, then

$$
P_{A, \mathscr{G}}=P_{\mathcal{N}}+Q
$$

Moreover, Q verifies the following properties:

1. $Q^{2}=Q$, ker $Q=A^{-1}\left(\mathscr{S}^{\perp}\right)$ and $R(Q)=\mathscr{S} \ominus \mathscr{N}$.
2. Q is A-self-adjoint.
3. $Q=P_{A, \mathscr{S} \ominus \mathscr{N}}$.

Proof. Using the matrix form (4) of A, observe that, in $L(\mathscr{S})$, ker $a=\mathcal{N}$ and $\overline{R(a)}=\overline{R\left(a^{1 / 2}\right)}=\mathscr{S} \ominus \mathscr{N}$. Note that $R(Q) \subseteq \overline{R(a)}$. Also $\operatorname{ker} Q=\operatorname{ker}(P A)$ $=A^{-1}\left(\mathscr{S}^{\perp}\right)$. If $\xi \in \mathscr{S} \ominus \mathscr{N}$, then

$$
a(Q \xi)=(P A P) Q \xi=P A \xi=P A P \xi=a(\xi)
$$

Since a is injective in $\mathscr{S} \ominus \mathscr{N}$, we can deduce that $Q \xi=\xi$ for all $\xi \in$ $\mathscr{S} \ominus \mathscr{N}$. Now, the compatibility of (A, \mathscr{S}) implies that $\mathscr{S}+A^{-1}\left(\mathscr{S}^{\perp}\right)=\mathscr{H}$. Also $A^{-1}\left(\mathscr{S}^{\perp}\right) \cap \mathscr{S}=\operatorname{ker} A \cap \mathscr{S}=\mathscr{N}$. Therefore $A^{-1}\left(\mathscr{S}^{\perp}\right) \dot{+}(\mathscr{S} \ominus \mathscr{N})=$ \mathscr{H}. Then $Q^{2}=Q$ and $R(Q)=\mathscr{S} \ominus \mathscr{N}$. Note that

$$
\operatorname{ker} Q=A^{-1}\left(\mathscr{S}^{\perp}\right) \subseteq A^{-1}\left((\mathscr{S} \ominus \mathscr{N})^{\perp}\right)=R(Q)^{\perp A}
$$

so that Q is A-self-adjoint by Eq. (2). On the other hand, $(\mathscr{S} \ominus \mathscr{N}) \cap$ $\operatorname{ker} A=\{0\}$, so that Q is the unique element of $P(A, \mathscr{S} \ominus \mathscr{N})$, by Theorem 2.3. Observe that $R(Q) \subseteq \mathscr{N}^{\perp}$ and $\mathscr{N} \subseteq \operatorname{ker} A \subseteq A^{-1}\left(\mathscr{S}^{\perp}\right)=\operatorname{ker} Q$. Therefore, $\left(P_{\mathcal{N}}+Q\right)^{2}=P_{\mathcal{N}}+Q, R\left(P_{\mathcal{N}}+Q\right)=\mathscr{S}$ and $\operatorname{ker}\left(P_{\mathcal{N}}+Q\right)=\left(A^{-1}\left(\mathscr{S}^{\perp}\right)\right)$ $\ominus \mathscr{N}$. These formulae clearly imply that $P_{\mathcal{N}}+Q=P_{A, \mathscr{S}}$ (see Theorem 2.3).

Proposition 4.2. If (A, \mathscr{S}) is compatible and $\mathscr{M}=\overline{A^{1 / 2}(\mathscr{S})}$, then $R\left(P_{. M} A^{1 / 2}\right) \subseteq R\left(A^{1 / 2} P\right)$. Moreover, Eq. (8) and

$$
\begin{equation*}
\left(A^{1 / 2} P\right) X=P_{. M} A^{1 / 2} \tag{9}
\end{equation*}
$$

have the same reduced solution. In particular, if $A^{1 / 2}(\mathscr{S})$ is closed and ker $A \cap$ $\mathscr{S}=\{0\}$, then

$$
\begin{equation*}
P_{A, \mathscr{S}}=\left(A^{1 / 2} P\right)^{\dagger} P_{. \mu} A^{1 / 2}=\left(A^{1 / 2} P\right)^{\dagger} A^{1 / 2}=(T P)^{\dagger} T \tag{10}
\end{equation*}
$$

for every $T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right)$ such that $T^{*} T=A$.
Proof. Denote $B=A^{1 / 2}$. Recall that $\mathscr{M}=\overline{B(\mathscr{S})}=B^{-1}\left(\mathscr{S}^{\perp}\right)^{\perp}$. Observe that

$$
\begin{equation*}
B P_{\mathscr{M}} B=A P_{A, \mathscr{S}}=A P P_{A, \mathscr{S}}: \tag{11}
\end{equation*}
$$

in fact, for $\xi \in \mathscr{H}$, let $\eta=P_{A, \mathscr{S}} \xi$ and $\rho=\xi-\eta \in A^{-1}\left(\mathscr{S}^{\perp}\right)$; then $B \eta \in \mathscr{M}$ and $B \rho \in B^{-1}\left(\mathscr{S}^{\perp}\right)=\mathscr{M}^{\perp}$. Hence, $B P_{M} B \xi=A \eta=A P_{A, \mathscr{S}} \xi$. By Proposition 4.1, the projection $Q=P_{A, \mathscr{S}}-P_{\mathcal{N}}$ is the reduced solution of the equation $P A P$ $X=P A$. We shall see that Q is the reduced solution of Eq. (9). First note that, by Eq. (11), $B P_{M} B=(A P) P_{A, \mathscr{S}}=(A P) Q$, so $B\left(P_{M} B-B P Q\right)=0$. But $R\left(P_{\mathscr{M}} B-B P Q\right) \subseteq \overline{R(B)}=(\operatorname{ker} B)^{\perp}$. Hence, Q is a solution of (9). Note that $\operatorname{ker} P_{M} B=B^{-1}\left(B^{-1}\left(\mathscr{S}^{\perp}\right)\right)=A^{-1}\left(\mathscr{S}^{\perp}\right)=\operatorname{ker} Q$ by Proposition 4.1. Finally,

$$
\overline{R\left((B P)^{*}\right)}=\overline{R(P B)}=\overline{R(P A P)}=\mathscr{S} \ominus \mathscr{N}=R(Q) .
$$

The first equality of Eq. (10) follows directly. The second, from the fact that $\left(A^{1 / 2} P\right)^{\dagger} P_{\mathscr{M}}=\left(A^{1 / 2} P\right)^{\dagger}$. The last equality follows easily using the polar decomposition of T because $A^{1 / 2}=|T|$.

Formula (10), for operators with closed range, is due to Golomb [11].
Corollary 4.3. Under the notations of Proposition 4.2, the pair (A, \mathscr{S}) is compatible if and only if $R\left(P_{M} A^{1 / 2}\right) \subseteq R\left(A^{1 / 2} P\right)$.

Proof. Suppose that $R\left(P_{\mathscr{M}} A^{1 / 2}\right) \subseteq R\left(A^{1 / 2} P\right)$. Then, given $\xi \in \mathscr{H}$, there must exist $\sigma \in \mathscr{S}$ such that $P_{\mathscr{M}} A^{1 / 2} \xi=A^{1 / 2} \sigma$. Therefore, $A^{1 / 2}(\xi-\sigma)=$ $\left(1-P_{M}\right) A^{1 / 2} \xi$ and

$$
\begin{align*}
\left\|A^{1 / 2}(\xi-\sigma)\right\| & =\left\|\left(1-P_{\mathscr{M}}\right) A^{1 / 2} \xi\right\|=d\left(A^{1 / 2} \xi, A^{1 / 2}(\mathscr{S})\right) \\
& =\inf \left\{\left\|A^{1 / 2}(\xi+\tau)\right\|: \tau \in \mathscr{S}\right\} \tag{12}
\end{align*}
$$

Hence, $\xi-\sigma \in \operatorname{sp}(T, \mathscr{S}, \xi)$ and $\operatorname{sp}(T, \mathscr{S}, \xi) \neq \emptyset$ for every $\xi \in \mathscr{H}$. This implies compatibility by Theorem 3.2. The converse implication was shown in Proposition 4.2.

Remark 4.4. If $A \in L(\mathscr{H})^{+}$and $\mathscr{S} \in \mathscr{H}$ is a closed subspace, then the set

$$
\left\{X \in L(\mathscr{H})^{+}: X \leqslant A \text { and } R(X) \subseteq \mathscr{S}^{\perp}\right\}
$$

has a maximum (for the natural order relation in $L(\mathscr{H})^{+}$), which is called the shorted operator of A to \mathscr{S}^{\perp}. We denote it by $\Sigma(P, A)$. This notion, due to Krein [14] and Anderson-Trapp [1], has many applications to electrical engineering. It is well known (see [16]) that

$$
\Sigma(P, A)=A^{1 / 2} P_{\mathscr{T}} A^{1 / 2}
$$

where $\mathscr{T}=A^{-1 / 2}\left(\mathscr{S}^{\perp}\right)=A^{1 / 2}(\mathscr{S})^{\perp}$. From the proof of Proposition 4.2, it follows that, if (A, \mathscr{S}) is compatible, then $A^{1 / 2}\left(1-P_{\mathscr{T}}\right) A^{1 / 2}=A P_{A, \mathscr{S}}$. Therefore, in this case, $\Sigma(P, A)=A\left(1-P_{A, \mathscr{S}}\right)$. More generally, it can be shown that $\Sigma(P, A)=A(1-Q)$ for every $Q \in \mathscr{P}(A, \mathscr{S})$ (see [7]).

5. CONVERGENCE OF SPLINE PROJECTIONS

This section is devoted to the study of the convergence of abstract splines in the general (i.e. not necessarily closed range) case. Given $A \in L(\mathscr{H})^{+}$, let us consider a sequence of closed subspaces \mathscr{S}_{n} such that all pairs $\left(A, \mathscr{S}_{n}\right)$ are compatible. Following de Boor [4] and Izumino [13], it is natural to look for conditions which are equivalent to the fact that $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{S O T} 0$ (i.e. the spline projections converge to I), where $\rightarrow{ }^{S O T}$ means convergence in the strong operator topology. This problem has a well-known solution under the assumption that $R(A)$ is closed (see [4] or [13]). However, in our more general setting, it is possible that the sequence $\left\{\mathscr{S}_{n}\right\}$ decreases to $\{0\}$, while $\left\|P_{A, \mathscr{S}_{n}}\right\|$ tends to infinity (see Example 5.7). This induces us to consider the following weaker convergence:

Definition 5.1. Let $A \in L(\mathscr{H})^{+}$and $T_{n}, T \in L(\mathscr{H}), n \in \mathbb{N}$. We shall say that the sequence T_{n} converges A-SOT to $T: T_{n} \rightarrow{ }^{A-S O T} T$ if

$$
\left\|\left(T_{n}-T\right) \xi\right\|_{A} \rightarrow 0 \quad \text { for every } \xi \in \mathscr{H}
$$

Note that $T_{n} \rightarrow{ }^{A-S O T} T$ if and only if $A^{1 / 2} T_{n} \rightarrow{ }^{S O T} A^{1 / 2} T$.
We start with the computation of the norm of $P_{A, \mathscr{S}}$ for any compatible pair (A, \mathscr{S}). Before that, recall the following formula, due to Ptak [17] (see also [5, 7]): if Q_{1} and Q_{2} are orthogonal projections such that $R\left(Q_{1}\right)+$ $R\left(Q_{2}\right)=\mathscr{H}$, then the norm of the unique projection Q_{3} with $\operatorname{ker} Q_{3}=R\left(Q_{1}\right)$
and $R\left(Q_{3}\right)=R\left(Q_{2}\right)$ is

$$
\begin{equation*}
\left\|Q_{3}\right\|=\left(1-\left\|Q_{1} Q_{2}\right\|^{2}\right)^{-1 / 2} \tag{13}
\end{equation*}
$$

Proposition 5.2. Let $A \in L(\mathscr{H})^{+}$such that the pair (A, \mathscr{S}) is compatible. Then,

$$
\begin{equation*}
\left\|P_{A, \mathscr{S}}\right\|^{2}=\inf \left\{\lambda>0: P A^{2} P \leqslant \lambda(P A P)^{2}\right\} \tag{14}
\end{equation*}
$$

If, in addition, $\operatorname{ker} A \cap \mathscr{S}=\{0\}$, then

$$
\begin{equation*}
\left\|P_{A, \mathscr{G}}\right\|=\left(1-\|Q P\|^{2}\right)^{-1 / 2} \tag{15}
\end{equation*}
$$

where Q denotes the orthogonal projection onto $A^{-1}\left(\mathscr{S}^{\perp}\right)$.
Proof. Let Q be the reduced solution of the equation $(P A P) X=P A$. Then $\|Q\|^{2}$ equals the infimum of Eq. (14) by Douglas Theorem. On the other hand, by Proposition 4.1, $\|Q\|=\left\|P_{A, \mathscr{S}}\right\|$, showing formula (14). If $\operatorname{ker} A \cap$ $\mathscr{S}=\{0\}$, then Theorem 2.3 assures that $R\left(P_{A, \mathscr{S}}\right)=\mathscr{S}$ and $\operatorname{ker} P_{A, \mathscr{S}}=$ $A^{-1}\left(\mathscr{S}^{\perp}\right)$. Therefore, (15) follows from Ptak formula (13).

Remark 5.3. Let $A \in L(\mathscr{H})^{+}$such that the pair (A, \mathscr{S}) is compatible and $\operatorname{ker} A \cap \mathscr{S}=\{0\}$. Then, if $P_{\text {ker } A}$ is the orthogonal projection onto ker A, then

$$
\left\|P_{A, \mathscr{G}}\right\| \geqslant\left(1-\left\|P_{\text {ker } A} P\right\|^{2}\right)^{-1 / 2}
$$

Indeed, if Q is the projection of Eq. (15), then $P_{\text {ker } A} \leqslant Q$ because $\operatorname{ker} A \subseteq$ $A^{-1}\left(\mathscr{S}^{\perp}\right)$. Then $\left\|P_{\text {ker } A} P\right\|^{2}=\left\|P P_{\text {ker } A} P\right\| \leqslant\|P Q P\|=\|Q P\|^{2}$. This inequality, shown by de Boor [4] in the closed range case, relates the norm of $P_{A, \mathscr{S}}$ with the angle between $\operatorname{ker} A$ and \mathscr{S}.

Proposition 5.4. Let $A \in L(\mathscr{H})^{+}$and let $\mathscr{S}_{n}(n \in \mathbb{N})$ be closed subspaces such that all pairs $\left(A, \mathscr{S}_{n}\right)$ are compatible. Denote $\mathscr{M}_{n}=\overline{A^{1 / 2}\left(\mathscr{S}_{n}\right)}, n \in \mathbb{N}$.

1. The following conditions are equivalent: (a) $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{A-S O T} 0$. (b) $\left\langle A P_{A, \mathscr{S}_{n}} \xi, \xi\right\rangle \rightarrow 0$, for every $\xi \in \mathscr{H}$ (i.e. $A P_{A, \mathscr{S}_{n}} \rightarrow{ }^{W O T} 0$ by polarization). (c) $A P_{A, \mathscr{S}_{n}} \rightarrow{ }^{S O T} 0$. (d) $\Sigma\left(P_{\mathscr{S}_{n}}, A\right) \rightarrow{ }^{S O T} A$. (e) $P_{M_{n}} A^{1 / 2} \rightarrow{ }^{S O T} 0$.
2. If there exists $C \geqslant 0$ such that $\left\|P_{A, \mathscr{S}_{n}}\right\| \leqslant C$ for all $n \in \mathbb{N}$ and $P_{\mathscr{S}_{n}} A \rightarrow$ SOT 0 , then $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{A-S O T} 0$.
3. If $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{A-S O T} 0$, then $P_{\mathscr{S}_{n}} A \rightarrow{ }^{\text {SOT }} 0$.

Proof.

1. Because $P_{A, \mathscr{S}_{n}}^{*} A=A P_{A, \mathscr{S}_{n}}$, it is clear that conditions (a)-(c) are equivalent. By Remark 4.4, $\Sigma\left(P_{\mathscr{S}_{n}}, A\right)=A\left(1-P_{A, \mathscr{S}_{n}}\right)$ so that (c) is equivalent
to (d). Finally, by Proposition 4.2, we know that $A^{1 / 2} P_{A, \mathscr{S}_{n}}=P_{M_{n}} A^{1 / 2}$ and this shows that (a) is equivalent to (e).
2. Suppose that there exists $C \geqslant 0$ such that $\left\|P_{A, \mathscr{S}_{n}}\right\| \leqslant C$ for all $n \in \mathbb{N}$ and that $P_{\mathscr{S}_{n}} A \rightarrow{ }^{\text {SOT }} 0$. Denote $P_{n}=P_{\mathscr{S}_{n}}$. The fact that $R\left(P_{A, \mathscr{S}_{n}}\right)=R\left(P_{n}\right)$ implies that $P_{n} P_{A, \mathscr{S}_{n}}=P_{A, \mathscr{S}_{n}}$. Therefore, for every $\xi \in \mathscr{H}$,

$$
\left\|P_{A, \mathscr{S}_{n}}^{*} A \xi\right\|=\left\|P_{A, \mathscr{S}_{n}}^{*} P_{n} A \xi\right\| \rightarrow 0
$$

since $\left\|P_{A, \mathscr{S}_{n}}\right\|$ is bounded. Hence $P_{A, \mathscr{S}_{n}}^{*} A=A P_{A, \mathscr{S}_{n}} \rightarrow{ }^{S O T} 0$ so that $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{A-S O T} 0$ by item 1 .
3. Suppose that $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{A-S O T} 0$. Then, by item $1, A P_{A, \mathscr{S}_{n}} \rightarrow{ }^{S O T} 0$. Note that $P_{A, \mathscr{S}_{n}} P_{n}=P_{n}$, so that $P_{n} P_{A, \mathscr{S}_{n}}^{*}=P_{n}$. Given $\xi \in \mathscr{H}$, we have that

$$
\left\|P_{n} A \xi\right\|=\left\|P_{n} P_{A, \mathscr{S}_{n}}^{*} A \xi\right\|=\left\|P_{n} A P_{A, \mathscr{L}_{n}} \xi\right\| \leqslant\left\|A P_{A, \mathscr{S}_{n}} \xi\right\| \rightarrow 0 .
$$

Remark 5.5. With the notations of Proposition 5.4, it follows that $P_{A, \mathscr{S}_{n}}$ $\rightarrow{ }^{A-S O T} 0$ if and only if $A^{1 / 2}\left(1-P_{A, \mathscr{S}_{n}}\right) \xi \rightarrow A^{1 / 2} \xi$ for every $\xi \in \mathscr{H}$ or, equivalently, the spline interpolants $\xi_{n}=\left(1-P_{A, \mathscr{S}_{n}}\right) \xi$ satisfy that $T \xi_{n} \rightarrow T \xi$ in \mathscr{H}_{1}, if $T \in L\left(\mathscr{H}, \mathscr{H}_{1}\right)$ and $T^{*} T=A$. In particular, if $P_{A, \mathscr{S}_{n}} \rightarrow{ }^{A-S O T} 0$, then $\min \left\{\|T(\xi+\tau)\|: \tau \in \mathscr{S}_{n}\right\}=\left\|T\left(1-P_{A, \mathscr{S}_{n}}\right) \xi\right\| \rightarrow\|T \xi\|$.

Proposition 5.6. Let $A \in L(\mathscr{H})^{+}$and $\mathscr{S}_{2} \subseteq \mathscr{S}_{1} \subseteq \mathscr{H}$ be closed subspaces. Suppose that $\left(A, \mathscr{S}_{1}\right)$ is compatible. Denote by $P_{i}=P_{\mathscr{S}_{i}}, i=1,2$ and $a_{1}=P_{1} A P_{1} \in L\left(\mathscr{S}_{1}\right)^{+}$. Then
$\left(A, \mathscr{S}_{2}\right)$ is compatible if and only if $\left(a_{1}, \mathscr{S}_{2}\right)$ is compatible in $L\left(\mathscr{S}_{1}\right)$.
Proof. We know that, if $A=\left(\begin{array}{ll}a_{1} & b_{1} \\ b_{1}^{*} & c_{1}\end{array}\right)$, in the matrix decomposition induced by P_{1}, then $R\left(b_{1}\right) \subseteq R\left(a_{1}\right)$. Hence also $R\left(P_{2} b_{1}\right) \subseteq R\left(P_{2} a_{1}\right)$. If $a_{1}=$ $\left(\begin{array}{ll}a_{2} & b_{2} \\ b_{2}^{*} & c_{2}\end{array}\right)$, using now the matrix decomposition induced by P_{2}, then $P_{2} a_{1}=$ $a_{2}+b_{2}$ and $P_{2} A\left(1-P_{2}\right)=b_{2}+P_{2} b_{1}$. Hence,

$$
R\left(P_{2} b_{1}\right) \subseteq R\left(P_{2} a_{1}\right)=R\left(a_{2}\right)+R\left(b_{2}\right) \text { and } R\left(P_{2} A\left(1-P_{2}\right)\right)=R\left(b_{2}\right)+R\left(P_{2} b_{1}\right)
$$

Therefore, the pair $\left(A, \mathscr{S}_{2}\right)$ is compatible if and only if $R\left(P_{2} A\left(1-P_{2}\right)\right) \subseteq$ $R\left(P_{2} A P_{2}\right)=R\left(a_{2}\right)$ if and only if $R\left(b_{2}\right) \subseteq R\left(a_{2}\right)$ if and only if the pair $\left(a_{1}, \mathscr{S}_{2}\right)$ is compatible.

Example 5.7. Let $A \in L(\mathscr{H})^{+}$injective but not invertible. With the notations of Proposition 5.6 it is easy to see that $P_{1} P_{A, \mathscr{S}_{2}} P_{1}=P_{A, \mathscr{S}_{2}} P_{1} \in$ $\mathscr{P}\left(a_{1}, \mathscr{S}_{2}\right)$. Note that a_{1} is injective, so that $\mathscr{P}\left(a_{1}, \mathscr{S}_{2}\right)$ has a unique
element and

$$
\begin{equation*}
P_{a_{1}, \mathscr{S}_{2}}=P_{A, \mathscr{S}_{2}} P_{1} \Rightarrow\left\|P_{A, \mathscr{S}_{2}}\right\| \geqslant\left\|P_{a_{1}, \mathscr{S}_{2}}\right\| . \tag{16}
\end{equation*}
$$

We shall see that there exists a sequence $\mathscr{S}_{n}, n \in \mathbb{N}$, of closed subspaces of \mathscr{H} such that

1. the pair $\left(A, \mathscr{S}_{n}\right)$ is compatible for every $n \in \mathbb{N}$,
2. $\mathscr{S}_{n+1} \subseteq \mathscr{S}_{n}$ for every $n \in \mathbb{N}$,
3. $\bigcap_{n \geqslant 1} \mathscr{S}_{n}=\{0\}$, so that $P_{\mathscr{S}_{n}} \rightarrow{ }^{\text {SOT }} 0$,
4. $\left\|P_{A, \mathscr{S}_{n}}\right\| \rightarrow \infty$.

In order to prove this fact, we need the following lemma:
Lemma 5.8. Let $B \in L(\mathscr{H})^{+}$be injective non-invertible. Then, for every $\varepsilon>0$, there exists a closed subspace $\mathscr{S} \subseteq \mathscr{H}$ such that the pair (B, \mathscr{S}) is compatible, $P_{\mathscr{S}} B P_{\mathscr{S}}$ is not invertible in $L(\overline{\mathscr{S}})$ and $\left\|P_{B, \mathscr{S}}\right\| \geqslant \varepsilon^{-1}$.

Proof. Let $\eta \in \mathscr{H}$ be a unit vector. Denote by $\xi=B \eta$ and consider the subspace $\mathscr{S}=\{\xi\}^{\perp}$ and $P=P_{\mathscr{S}}$. It is clear that $\eta \in B^{-1}\left(\mathscr{S}^{\perp}\right)$. First note that $\langle\xi, \eta\rangle=\langle B \eta, \eta\rangle>0$, so that $\eta \notin \mathscr{S}$. Since \mathscr{S} is an hyperplane, this implies that $\mathscr{S}+B^{-1}\left(\mathscr{S}^{\perp}\right)=\mathscr{H}$ and the pair (B, \mathscr{S}) is compatible. Also PBP is not invertible because $\operatorname{dim} \mathscr{S}^{\perp}=1<\infty$. Note that $B^{-1}\left(\mathscr{S}^{\perp}\right)$ is the subspace generated by η. Hence, if $Q=P_{B^{-1}\left(\mathscr{S}^{\perp}\right)}$, it is easy to see that $\|P Q\|=\|P \eta\|$. Then, by Eq. (15),

$$
\left\|P_{B, \mathscr{S}}\right\|=\left(1-\|P Q\|^{2}\right)^{-1 / 2}=\left(1-\|P \eta\|^{2}\right)^{-1 / 2}=\|(1-P) \eta\|^{-1}
$$

and

$$
\|(1-P) \eta\|=\left|\left\langle\eta, \frac{\xi}{\|\xi\|}\right\rangle\right|=\frac{\langle\eta, B \eta\rangle}{\|B \eta\|}
$$

So, it suffices to show that there exists a unit vector η such that $\langle\eta, B \eta\rangle \leqslant \varepsilon$ $\|B \eta\|$. Consider $\rho \in \mathscr{H} \backslash R\left(B^{1 / 2}\right)$ a unit vector. Let ρ_{n} be a sequence of unit vectors in $R\left(B^{1 / 2}\right)$ such that $\rho_{n} \rightarrow \rho$. Let $\mu_{n} \in \mathscr{H}$ such that $B^{1 / 2} \mu_{n}=\rho_{n}, n \in$ \mathbb{N}, and denote by $\xi_{n}=B^{1 / 2} \rho_{n}=B \mu_{n}$, and $\xi=B^{1 / 2} \rho$. It is easy to see, using that $B\left(\mu_{n}\right)=\xi_{n} \rightarrow \xi \notin R(B)$, that $\left\|\mu_{n}\right\| \rightarrow \infty$. Denote by $\eta_{n}=\mu_{n}\left\|\mu_{n}\right\|^{-1}$. Then

$$
\frac{\left\langle\eta_{n}, B \eta_{n}\right\rangle}{\left\|B \eta_{n}\right\|}=\frac{\left\langle\mu_{n}, B \mu_{n}\right\rangle}{\left\|\mu_{n}\right\|^{2}\left\|B \eta_{n}\right\|}=\frac{\left\|B^{1 / 2} \mu_{n}\right\|^{2}}{\left\|\mu_{n}\right\|\left\|B \mu_{n}\right\|}=\frac{1}{\left\|\mu_{n}\right\|\left\|\xi_{n}\right\|} \rightarrow 0
$$

because $\xi_{n} \rightarrow \xi \neq 0$.

By an inductive argument, using Lemma 5.8, Proposition 5.6 and Eq. (16), we can construct a sequence of compatible subspaces $\mathscr{S}_{n}, n \in \mathbb{N}$, such that $\mathscr{S}_{n+1} \subseteq \mathscr{S}_{n}$ and $\left\|P_{A, \mathscr{S}_{n}}\right\| \rightarrow \infty$. We can also get that $P_{\mathscr{S}_{n}} \rightarrow{ }^{S O T} 0$ by interlacing, before constructing the subspace \mathscr{S}_{n+1}, a spectral subspace \mathscr{T}_{n} of $P_{\mathscr{S}_{n}} A P_{\mathscr{S}_{n}}$ (as an operator in $L\left(\mathscr{S}_{n}\right)$), in such a way that $P_{\mathscr{T}_{n}} A P_{\mathscr{T}_{n}}$ is not invertible and the projections $P_{\mathscr{T}_{n}} \rightarrow{ }^{S O T} 0$ (this can be done recursively by testing the projections $P_{\mathscr{T}_{n}}$ in the first n elements of a countable dense subset of $\mathscr{H})$, and taking \mathscr{S}_{n+1} as a subspace of \mathscr{T}_{n}. Note that the pairs $\left(P_{\mathscr{S}_{n}} A\right.$ $\left.P_{\mathscr{S}_{n}}, \mathscr{T}_{n}\right)$ are clearly compatible, so that also the pairs $\left(A, \mathscr{T}_{n}\right)$ are compatible by Proposition 5.6.

Remark 5.9. Recall from Remark 4.4 that if (A, \mathscr{S}) is compatible, then $A\left(1-P_{A, \mathscr{S}}\right)=\Sigma(P, A)$. Then

$$
0 \leqslant A P_{A, \mathscr{S}}=A-\Sigma(P, A) \leqslant A
$$

This implies that $\left\|A P_{A, \mathscr{S}}\right\| \leqslant\|A\|$, while $\left\|P_{A, \mathscr{S}}\right\|$ can be arbitrarily large.

6. SOME EXAMPLES

In this section, we present several examples of pairs (A, \mathscr{S}) which are not compatible and pairs (A, \mathscr{S}) which are compatible and such that the spline projector $P_{A, \mathscr{S}}$ can be explicitly computed. Observe that Example 6.4 cannot be studied under the closed range hypothesis, considered by Atteia, de Boor and Izumino.

Example 6.1. Let $A \in L(\mathscr{H})^{+}$and

$$
M=\left(\begin{array}{cc}
A & A^{1 / 2} \\
A^{1 / 2} & I
\end{array}\right)=\left(\begin{array}{cc}
A^{1 / 2} & 0 \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
A^{1 / 2} & I \\
0 & 0
\end{array}\right) \in L(\mathscr{H} \oplus \mathscr{H})^{+} .
$$

Denote by $\mathscr{S}=\mathscr{H} \oplus\{0\}$ and by $N=\left(\begin{array}{cc}A^{1 / 2} & I \\ 0 & 0\end{array}\right)$. Since $M=N^{*} N$, then ker $M=\operatorname{ker} N=\left\{\xi \oplus-A^{1 / 2} \xi: \xi \in \mathscr{H}\right\}$ which is the graph of $-A^{1 / 2}$. Note that $R(N)=\left(R\left(A^{1 / 2}\right)+R(I)\right) \oplus\{0\}=\mathscr{S}$, so that $R(M)$ is also closed. If A is injective with non-closed range, then (M, \mathscr{S}) is not compatible (because $R(A)$ is properly included in $R\left(A^{1 / 2}\right)$). Observe that this implies that the inclination between \mathscr{S} and $\operatorname{ker} M$ is one, cf. [4].

Remark 6.2. Let $P \in \mathscr{P}, R(P)=\mathscr{S}$ and $A=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right) \in L(\mathscr{H})^{+}$. It is well known that the positivity of A implies that $R(b) \subseteq R\left(a^{1 / 2}\right)$. Therefore, if $\operatorname{dim} \mathscr{S}<\infty$ then the pair (A, \mathscr{S}) is compatible : in fact in this case $R(a)=$ $R(P A P)$ must be closed, so $R(b) \subseteq R\left(a^{1 / 2}\right)=R(a)$ and Corollary 2.2, can be
applied. On the other hand, if $\operatorname{dim} \mathscr{S}^{\perp}<\infty$ and $R(A)$ is closed then, by Remark $2.4,(A, \mathscr{S})$ is compatible. However, if $R(A)$ is not closed, then the pair (A, \mathscr{S}) can be non-compatible:

Proposition 6.3. Let $P \in \mathscr{P}, R(P)=\mathscr{S}$ and $A \in L(\mathscr{H})^{+}$. Suppose that A is injective non-invertible and $\operatorname{dim} \mathscr{S}^{\perp}<\infty$. Then (A, \mathscr{S}) is compatible if and only if $\mathscr{S}^{\perp} \subseteq R(A)$.

Proof. By Eq. (2), (A, \mathscr{S}) is compatible if and only if $A^{-1}\left(\mathscr{S}^{\perp}\right)+\mathscr{S}=$ \mathscr{H}. Since A is injective, Eq. (3) says that $A^{-1}\left(\mathscr{S}^{\perp}\right) \cap \mathscr{S}=\{0\}$. Now the result becomes clear because $\operatorname{dim} A^{-1}\left(\mathscr{S}^{\perp}\right)=\operatorname{dim}\left(\mathscr{S}^{\perp} \cap R(A)\right)$.

Example 6.4. Let $T \in L\left(\mathscr{H}, L^{2}\right)$ given by $T e_{m}=\frac{e^{i(m+1) t}}{m}$, where $e_{m}(m \in \mathbb{N})$ is an orthonormal basis of \mathscr{H}. Then $A=T^{*} T$ is given by $A e_{m}=\frac{e_{m}}{m^{2}}$, which is injective non-invertible. Let $\xi_{1}, \ldots, \xi_{n} \in R(A)$, denote by $\mathscr{S}=\left\{\xi_{1}, \ldots, \xi_{n}\right\}^{\perp}$ and $P=P_{\mathscr{L}}$. If $\xi_{i}=\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(m)}, \ldots\right), 1 \leqslant i \leqslant n$, denote by

$$
\eta_{i}=\left(\xi_{i}^{(1)}, 4 \xi_{i}^{(2)}, \ldots, m^{2} \xi_{i}^{(m)}, \ldots\right) \in \mathscr{H}, \quad 1 \leqslant i \leqslant n
$$

and Q the orthogonal projection onto the subspace \mathscr{T} generated by $\eta_{1}, \ldots, \eta_{n}$. It is clear that $\mathscr{T}=A^{-1}\left(\mathscr{S}^{\perp}\right)$. Then (A, \mathscr{S}) is compatible and $P_{A, \mathscr{S}}$ is the projection onto \mathscr{S} with kernel \mathscr{T}. Therefore (cf. [5] or [17]), $\|P Q\|<1$,

$$
P_{A, \mathscr{S}}=(1-Q P)^{-1}(1-Q)=\sum_{k=0}^{\infty}(Q P)^{k}(1-Q)
$$

and $\left\|P_{A, \mathscr{S}}\right\|=\left\|1-P_{A, \mathscr{S}}\right\|=\left(1-\|P Q\|^{2}\right)^{-1 / 2}$.
Remark 6.5. Let $B \in L(\mathscr{H})^{+}$be injective and non-invertible. Let $\xi \in \mathscr{H}$ be a unit vector, $\mathscr{S}=\{\xi\}^{\perp}, P=P_{\mathscr{S}}$ and $P_{\xi}=1-P$. Let $B=\left(\begin{array}{cc}a & b \\ b^{*} & c\end{array}\right)$ in terms of P. By Proposition 6.3, (B, \mathscr{S}) is compatible if and only if $\xi \in R(B)$. Note that the sequence $\xi_{n}($ in $R(B))$ of Lemma 5.8 converges to $\xi \notin R(B)$. This is, precisely, the fact which implies that $\left\|P_{B,\left\{\xi_{n}\right\}^{\perp}}\right\|$ converges to infinity.

Example 6.6. Fix \mathscr{S} a closed subspace of \mathscr{H} and consider the set

$$
\mathscr{A}_{\mathscr{S}}=\left\{A \in L(\mathscr{H})^{+}: \text {the pair }(A, \mathscr{S}) \text { is compatible }\right\}
$$

and the map $\alpha: \mathscr{A}_{\mathscr{S}} \rightarrow \mathcal{Q}$ given by $\alpha(A)=P_{A, \mathscr{S}}$. We shall see that α is not continuous. Indeed, let $A=\left(\begin{array}{ll}a & b \\ b^{*} & b \\ c\end{array}\right)$, and suppose that $R(b)=R(a)$ is a closed subspace \mathscr{M} properly included in \mathscr{S}. Denote by $\mathscr{N}=\mathscr{S} \ominus \mathscr{M}$ and consider the projection $P_{\mathcal{N}}$ and some element $u \in L\left(\mathscr{S}^{\perp}, \mathscr{N}\right) \subseteq L(\mathscr{H}), u \neq 0$. Consider,
for every $n \in \mathbb{N}$,

$$
\begin{aligned}
A_{n} & =A+\frac{1}{n}\left(P_{\mathcal{N}}+u\right)^{*}\left(P_{\mathcal{N}}+u\right)=A+\frac{1}{n}=\left(\begin{array}{ccc}
1 & 0 & u \\
0 & 0 & 0 \\
u^{*} & 0 & u^{*} u
\end{array}\right) \begin{array}{c}
\mathscr{N} \\
\mathscr{M} \\
\mathscr{S}^{\perp}
\end{array} \\
& =\left(\begin{array}{ccc}
\frac{1}{n} & 0 & \frac{1}{n} u \\
0 & a & b \\
\frac{1}{n} u^{*} & b^{*} & c+\frac{1}{n} u^{*} u
\end{array}\right) \geqslant A \geqslant 0 .
\end{aligned}
$$

It is clear that $A_{n} \rightarrow A$. Note that a is invertible in $L(\mathscr{M})$. Then, by Theorem 2.3,

$$
P_{A, \mathscr{S}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & a^{-1} b \\
0 & 0 & 0
\end{array}\right) \begin{gathered}
\mathscr{N} \\
\mathscr{M} \\
\mathscr{S}^{\perp}
\end{gathered}
$$

Also $a+\frac{1}{n} P_{\mathcal{N}}$ is invertible in $L(\mathscr{S})$ for every $n \in \mathbb{N}$. Then,

$$
\begin{aligned}
P_{A_{n}, \mathscr{S}} & =\left(\begin{array}{ccc}
n & 0 & 0 \\
0 & a^{-1} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{n} & 0 & \frac{1}{n} u \\
0 & a & b \\
\frac{1}{n} u^{*} & b^{*} & c+\frac{1}{n} u^{*} u
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & u \\
0 & 1 & a^{-1} b \\
0 & 0 & 0
\end{array}\right) \begin{array}{l}
\mathscr{N} \\
\mathscr{M} \\
\mathscr{S}^{\perp}
\end{array}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Therefore, $\alpha\left(A_{n}\right)=P_{A_{n}, \mathscr{S}} P_{A, \mathscr{S}}=\alpha(A)$. Note that the sequence $\alpha\left(A_{n}\right)$ converges (actually, it is constant) to $P_{A, \mathscr{S}}+u$, which belongs to $\mathscr{P}(A, \mathscr{S})$ by Theorem 2.3.

REFERENCES

1. W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71.
2. E. Andruchow, G. Corach, and D. Stojanoff, Geometry of oblique projections, Studia Math. 137 (1999) 61-79.
3. M. Atteia, Generalization de la définition et des propriétés des "spline-fonctions," C.R. Acad. Sci. París 260 (1965), 3550-3553.
4. C. de Boor, Convergence of abstract splines, J. Approx. Theory 31 (1981), 80-89.
5. D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128 (2000), 1415-1418.
6. G. Corach, A. Maestripieri, and D. Stojanoff, Generalized Schur complements and oblique projections, Linear Algebra Appl. 341 (2002), 259-272.
7. G. Corach, A. Maestripieri, and D. Stojanoff, Oblique projections and Schur complements, Acta Sci. Math. (Szeged) 67 (2001) 337-356.
8. F. Deutsch, The angle between subspaces in Hilbert space, in "Approximation Theory, Wavelets and Applications" (S. P. Singh, Ed.), pp. 107-130, Kluwer, Netherlands, 1995.
9. F. J. Delvos, Splines and pseudoinverses, RAIRO Anal. Numér. 12 (1978), 313-324.
10. R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
11. M. Golomb, "Splines, n-Widths and Optimal Approximations," MRC Technical Summary Report 784, 1967.
12. S. Hassi, and K. Nordström, On projections in a space with an indefinite metric, Linear Algebra Appl. 208/209 (1994), 401-417.
13. S. Izumino, Convergence of generalized splines and spline projectors, J. Approx. Theory 38 (1983), 269-278.
14. M. G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N.S.) 20 (62) (1947), 431-495.
15. Z. Pasternak-Winiarski, On the dependence of the orthogonal projector on deformations of the scalar product, Studia Math. 128 (1998), 1-17.
16. E. L. Pekarev, Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1992), 147-163.
17. V. Ptak, Extremal operators and oblique projections, Casopis Pest. Mat. 110 (1985), 343-350.
18. A. Sard, Optimal approximation, J. Funct. Anal. 1 (1967), 222-244.
19. B. Shekhtman, Unconditional convergence of abstract splines, J. Approx. Theory 30 (1980), 237-246.
